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In the context of waste upgrading of polyethylene terephthalate (PET) by pyrolysis, this study presents
three on-line mass spectrometric techniques with soft ionization for monitoring the emitted decomposi-
tion products and their thermal dependent evolution profiles. Pyrolysis experiments were performed
using a thermogravimetric analyzer (TGA) under nitrogen atmosphere with a heating rate of 5 �C/min
from 30 �C to 600 �C. Single-photon ionization (SPI at 118 nm/10.5 eV) and resonance enhanced multiple
photon ionization (REMPI at 266 nm) were used with time-of-flight mass spectrometry (TOF-MS) for
evolved gas analysis (TGA-SPI/REMPI-TOFMS). Additionally, the chemical signature of the pyrolysis prod-
ucts was investigated by atmospheric pressure chemical ionization (APCI) ultra high resolution Fourier
Transform ion cyclotron resonance mass spectrometry (FT-ICR MS) which enables assignment of molec-
ular sum formulas (TGA-APCI FT-ICR MS). Despite the soft ionization by SPI, the fragmentation of some
compounds with the loss of the [O-CH = CH2] fragment is observed. The major compounds were acetalde-
hyde (m/z 44), benzoic acid (m/z 122) and a fragment of m/z 149. Using REMPI, aromatic species were
selectively detected. Several series of pyrolysis products were observed in different temperature inter-
vals, showing the presence of polycyclic aromatic hydrocarbons (PAHs), especially at high temperatures.
FT-ICR MS data showed, that the CHO4 class was the most abundant compound class with a relative
abundance of 45.5%. The major compounds detected with this technique corresponded to m/z
193.0495 (C10H9O4

+) and 149.0233 (C8H5O3
+). Based on detailed chemical information, bulk reaction path-

ways are proposed, showing the formation of both cyclic monomer/dimer and linear structures.
� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Pyrolysis is a versatile thermochemical technique that converts
a solid material into useful gaseous, liquid, and solid products in
absence of oxygen. This technique can be used to valorize various
products, such as polymers, biomass, and tires. The material cho-
sen in this study is polyethylene terephthalate (PET). PET is the
third frequently consumed polymer in Europe after polypropylene
and low density polyethylene (Kawecki et al., 2018). It is frequently
used to make a variety of consumer goods, such as synthetic polye-
ster fibers, bottles and films (Kawecki et al., 2018; Zander et al.,
2018).
The pyrolysis of PET yields a complex mixture of products
which consists of aldehydes (e.g., acetaldehyde, benzaldehyde),
carbon oxides (CO2 and CO), aliphatic hydrocarbons C1-C4 (e.g.,
CH4, C2H4), aromatic species (e.g., benzene, toluene, styrene),
carboxylic acids such as benzoic acid and its derivatives (e.g.,
acetylbenzoic acid, methylbenzoic acid, ethylbenzoic acid),
terephthalic acid and vinyl terephthalate as well as esters (e.g.,
di-vinyl terephthalate, vinyl benzoate), ketones (e.g., acetophe-
none, benzophenone, fluorenone) and other compounds (Artetxe
et al., 2010; Dziȩcioł and Trzeszczyński, 2001; Dzięcioł and
Trzeszczyński, 2000; Kumagai et al., 2017; Sophonrat et al., 2017;
Yoshioka et al., 2004).

Different conventional methods were used in literature to char-
acterize the pyrolysis products by online or offline analysis. Con-
cerning offline analysis (i.e. after condensation), the most used
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analytical methods are Gas Chromatography coupled to Mass Spec-
trometry (GC-MS) and High Performance Liquid Chromatography
(HPLC) (Çit et al., 2010; Dhahak et al., 2019). However, offline anal-
ysis does not allow the characterization of heavy species, which
might be produced during the pyrolysis. For online analysis, PET
pyrolysis experiments were mainly coupled to Fourier Transform
Infrared Spectroscopy (FTIR), High Resolution Pyrolysis
Gas-Chromatography and micro- GC (Badia et al., 2013; Czégény
et al., 2012; Dhahak et al., 2019; Ohtani et al., 1986). These tech-
niques are not able to analyze high mass compounds. Online anal-
yses have the advantage of avoiding spurious reactions that can
occur during the product condensation, and thus help predicting
the genuine pyrolysis reaction pathways.

In the last decades, time of flight mass spectrometry (TOF-MS)
has been widely applied (Lee et al., 2017; Shi et al., 2018; Wu
et al., 2011). It provides high sensitivity and high acquisition speed
(Green and Martin, 2006; Qian and Dechert, 2002). The identifica-
tion of complex mixtures however often requires high resolution
mass spectrometry which allows resolving multiple peaks with
the same nominal m/z (Barrow et al., 2014). Fourier transform
ion cyclotron resonance mass spectrometry (FT-ICR MS) has pro-
ven high potential for detecting and identifying compounds with-
out pre-separation by chromatography (Bae et al., 2010;
Kekäläinen et al., 2014). Molecular formula can be assigned to
the resolved signals, typically within ppm mass accuracy (Huba
et al., 2016).

Different ionization methods are available for mass spectrome-
try, all exhibiting different advantages and drawbacks. In fact, elec-
tron ionization (EI) in vacuum is the method commonly used for
Fig. 1. Ionization energies of selected molecules identified in PET pyrolysis
the evolved gas analysis of pyrolysis gases. It is a ‘‘hard” and uni-
versal ionization mode (Jia et al., 2016; Yuzawa et al., 2013). It
leads to strong fragmentation of the molecule because of the high
ionization energy generally deployed (70 eV) (Hsu and Ni, 2018).
Consequently, the EI mass spectrum is complicated to interpret
because of the absence of the molecular ions and strong overlap-
ping signals of complex mixtures impeding data interpretation.
In contrast, soft ionization techniques such as chemical ionization
(CI), atmospheric pressure chemical ionization (APCI), electrospray
ionization (ESI) or vaccum photo ionization (PI), a molecular ion
(radical cation and/or protonated ion species) can be preserved
and fragmentation is greatly diminished (Wang et al., 2015),
although all to the latter methods are less universal than EI.

Photo ionization (PI) coupled to mass spectrometry has been
widely used for the characterization of complex mixtures. PI can
be divided in single-photon ionization (SPI) and resonance-
enhanced multiphoton ionization (REMPI). SPI commonly involves
a single-photon in the vacuum ultraviolet range (VUV) to ionize the
molecule in one step, inducing little or no fragmentation (Giri et al.,
2017; Hsu and Ni, 2018). The photon energy commonly used is
between 7.5 and 11.8 eV, corresponding to a wavelength of 165–
105 nm (Giri et al., 2017). In other words, only organic molecules
with ionization energy lower than the photon energy can be ion-
ized. Many types of lasers can be used to generate VUV light with
different wavelengths such as Nd:YAG (118 nm; 10.48 eV (Rüger
et al., 2018)), F2 (157 nm; 7.9 eV (Trukhin and Golant, 2009)), H2

(160 nm; 7.75 eV (Fukuzawa and Tanimizu, 1978)). Fig. 1 repre-
sents the ionization energies (IE) of compounds identified during
PET pyrolysis (Sovová et al., 2008). IE are available from the
(adapted from refs (Hanley and Zimmermann, 2009; Jia et al., 2016)).
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National Institute of Standards and Technology (NIST) (‘‘NIST
Chemistry webbook [Gas phase ion energetics data] Available
online : https://webbook.nist.gov/chemistry/). IE of most com-
pounds are below the photon energy, except certain small mole-
cules, such as CO, CO2, H2O, H2, and CH4. Carbon oxides might
represent a major proportion of PET pyrolysis gases, but cannot
be ionized with common setups.

Unlike SPI, REMPI uses ultraviolet (UV) light, requiring at mini-
mum two photons in which a single-photon or multiple photons
absorbed excites an intermediate state and a second photon ion-
izes the atom or molecule (Jia et al., 2016). The soft ionization
pathway, due to the low photon energies, leads to few fragmenta-
tion which facilitates the interpretation of the mass spectra. In
addition, REMPI allows the selective detection of vibronic structure
species such as mono- or polycyclic aromatic compounds and their
derivatives (Dorfner et al., 2004; Zimmermann et al., 1999).

Another soft ionization technique commonly used, especially
for FT-ICR MS, is atmospheric pressure chemical ionization (APCI)
(Crepier et al., 2018). Corona discharge induced ion- molecule reac-
tions in gas phase, generating radical cations or protonated mole-
cule ions with little fragmentation (Li et al., 2015; Tose et al.,
2015). This technique allows the detection of polar and medium
polar compounds, preferably oxygenated species (Parr et al.,
2018; Rüger et al., 2018). Due to instrumental limits of the FT–
ICR MS, the mass range is between 100 and 1000. More details
on the APCI process are given elsewhere (Li et al., 2015).

Numerous studies on pyrolysis have been performed by
coupling thermogravimetry or pyrolysis experiments with the ana-
lytical techniques described above (Huang et al., 2017; Shi et al.,
2018; Wu et al., 2011; Xu et al., 2017). These techniques provide
not only the chemical formula of the analytes but also their evolu-
tion profile in real time. Consequently, temperature dependent
pyrolysis products can be analyzed. So far, numerous studies
focused on polymers such as polyethylene, polypropylene, poly-
styrene and polyvinyl chloride (Huang et al., 2017; Kai et al.,
2019; Saraji-Bozorgzad et al., 2008; Wang et al., 2015; Wu et al.,
2011; Zhou et al., 2019). However, limited studies have been con-
ducted on oxygenated macromolecules such as polyethylene
terephthalate (PET). Some PET pyrolysis experiments have been
conducted on-line by using conventional analytical tools such as
thermogravimetry (TGA) coupled to mass spectrometry (Gupta
et al., 2004), TGA coupled to Fourier transform infrared spec-
troscopy (FTIR) (Badia et al., 2013; Czégény et al., 2012;
Kinoshita et al., 1993; Pan et al., 2016), and Pyrolysis-gas chro-
matography (PyGC) (Ohtani et al., 1986).

In this study, three different analytical techniques were coupled
to thermogravimetry for on-line monitoring of volatile compounds
emitted by the slow pyrolysis of PET. Single-photon ionization (SPI)
Fig. 2. Schematic of the instrumental setup of: (a) TGA-REMPI/SPI-TOF-MS; (b) TG
at 118 nm (10.5 eV) and resonance enhanced multi photon ioniza-
tion (REMPI) at 266 nm were coupled to a time of flight mass spec-
trometer (TOF-MS). SPI is aiming at detection of organic species
whose ionization energy are lower than 10.5 eV, whereas REMPI
is suitable for the sensitive detection of aromatic and polyaromatic
constituents. Another thermogravimetry analyzer was coupled to a
Fourier transform ion cyclotron resonance mass spectrometer (FT-
ICR MS) using atmospheric pressure chemical ionization (APCI).
APCI FT-ICR MS is suitable to ionize medium-polar and polar spe-
cies with a mass range [100–1000]. Using the FT-ICR MS exact
mass data, detailed chemical information was gained and
combined with the results obtained with SPI and REMPI. This proce-
dure allowed for the detailed description of the pyrolysis process.
2. Materials and methods

2.1. Materials

PET was purchased from Goodfellow SARL (Lille, France) in a
powder form (particle size of 300 mm). This polymer is amorphous
with a crystallinity of 16%. The elemental analysis of carbon,
hydrogen and oxygen content in PET was determined using a Flash
Smart CHNS/O Analyser by Thermo Fisher Instrument. The oxygen
content was calculated by difference. The results showed that PET
contains about 45.5% carbon by mass, 36.4% hydrogen and 18.2%
oxygen.
2.2. Instrumentation

2.2.1. Thermogravimetry coupled to SPI/REMPI-TOF-MS
A schematic overview of TG-REMPI/SPI-TOF-MS is presented in

Fig. 2a) (Rüger et al., 2018). The thermobalance (STA 409, Netzsch
Geratebau, Selb, Germany) was on-line coupled to the ionization
source of the mass spectrometer using a heated transfer line
(280 �C, ID 280 lm � 2.25 m length). 8–10 mg of PET was filled
in an aluminum oxide crucible and heated up to 550 �C with a con-
stant heating rate of 5 �C/min. The nitrogen flow rate around the
sample was fixed to 50 mL/min for reactive gas and 50 mL/min
for protective gas.

The ionization source was operated under vacuum conditions
(around 10�4 mbar) which allows transferring an aliquot fraction
of evolved gas out of the thermobalance inside the mass spectrom-
eter based on the pressure gradient. A Nd:YAG laser (Surelite III,
Continuum, Inc., Santa Clara, CA, U.S.A; wavelength: 1064 nm
(Czech et al., 2016)) was used in this experiment. A beam at
355 nmwas produced by frequency tripling conversion. It operated
with pulse energies of 25 mJ, pulse width of 5 ns, and repetition
A-APCI FT-ICR MS (adapted from refs (Rüger et al., 2018; Rüger et al., 2015).

https://webbook.nist.gov/chemistry/
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rate of 10 Hz. For SPI, the wavelength was again tripled, generating
a vacuum ultraviolet light (118 nm, 10.5 eV), by using a xenon-
filled gas cell (Xe 4.0, 12 mbar). For REMPI, a wavelength of
266 nm (4.66 eV) was obtained by frequency-quadrupling of the
Nd:YAG laser 1064 nm. Consequently, the energy ionization with
REMPI using two photons is 9.32 eV. Further details are available
elsewhere (Czech et al., 2016; Fendt et al., 2013).

Once the ions are generated, they are m/z-separated using a
reflectron TOF analyzer (Kaesdorf Instrumente für Forschung and
Industrie, Munich, Germany) and detected by a microchannel plate
(MCP, Chevron Plate, Burle Electro-Optics Inc.) (Czech et al., 2016;
Rüger et al., 2018). The ions were recorded up tom/z 500. A custom
LabView-software was used for data processing (Czech et al.,
2016).
2.2.2. Thermogravimetry coupled to APCI/FT-ICR-MS
A thermobalance (STA 209, Netzsch Gerätebau GmbH,

Germany) was used for pyrolysis experiments (Fig. 2b). A mass of
1–1.5 mg sample was loaded in an aluminum crucible and heated
under a constant nitrogen flow of 200 mL/min from 20 �C to 600 �C
with a heating rate of 5 �C/min. Approximately 2 mL/min of the
evolved gas mixture was transferred to the ionization chamber
via a slight overpressure of 5 mbar by a heated transfer line (deac-
tivated fused silica capillary, 2 m, 0.53 mm ID, 300 �C). The chem-
ical ionization was carried out by a modified Bruker GC-APCI II
source, operating at atmospheric pressure in positive ion mode.
For ionization, a stainless-steel needle was used, generating a cor-
ona discharge with a current of 2.5 mA. More details have been
given elsewhere (Rüger et al., 2015). The ions produced were
detected by a Bruker Apex II ultra FT–MS equipped with a 7T mag-
net (InfinityCell, Bruker Daltonics, Bremen, Germany). A mass
range of 100–1000 was recorded with five microscans per spec-
trum. A 4 Megaword transient of approximately 2 s length was
applied, offering an ultrahigh resolution of 260,000 at m/z 400
was obtained.

Data processing was carried out using Bruker DataAnalysis for
m/z-calibration of the spectra and a self-written tool CERES based
on Matlab scripting for further processing and sum formula calcu-
lation. Every measurement was internal linearly calibrated in
DataAnalysis and again every single spectrum during processing
in CERES. For sum formula assignment, the following restrictions
were applied: C4–100H4–200N0O15S0, H/C ratio of 0–3 and Double
Bond Equivalent (DBE) of 0–40.
3. Results and discussion

3.1. Evolved gas analysis by Single-photon ionization (SPI) mass
spectrometry

Fig. 3a) shows the residual mass (TGA), the derivative of the
mass loss signal (DTG) and the total ion current (TIC) as a function
of temperature. Over the whole pyrolysis time, the TIC is obtained
by adding all ions of the spectra obtained at a defined time. Visibly,
the evolution of TIC coincides with the DTG curve. This indicates
that SPI detected some of the major volatile degradation products
of the PET pyrolysis, excluding CO2 and CO. The decomposition
starts at roughly 350 �C and lasts approximately up to 500 �C.
The maximum of TIC and DTG corresponds to 435 ± 1 �C.

Fig. 3b) displays the average mass spectra for selected temper-
ature ranges of the emitted compounds. The structure of the mole-
cules was determined based on literature (Guo et al., 2015) (Sovová
et al., 2008). It should be noted that the temperature indicates the
evaporation of molecules and they can be generated before in the
condensed phase. Signal intensities increase steadily up to a tem-
perature of 450 �C. In the 350–400 �C temperature range, major
degradation products appear, and their intensities increase as the
pyrolysis temperature increases. Signals at m/z 44, 122, and 166
most likely correspond to acetaldehyde, benzoic acid, and tereph-
thalic acid, respectively. Based on the literature, the peak corre-
sponding to m/z 149 is a characteristic fragment of vinyl
terephthalate (Mw = 192 g/mol) which is reported to be one of
the primary compounds of PET degradation (Garozzo et al., 1987;
Plage and Schulten, 1990). Thus, a mass loss of m/z 43 occurs,
which can be attributed to a [O-CH@CH2] fragment (Garozzo
et al., 1987; Plage and Schulten, 1990). Despite soft ionization,
the carbon - carbon double bond (C@C) is destabilized followed
by the oxygen ester, undergoing photo-fragmentation under these
conditions (Van Dam and Oskam, 1978). An example in the litera-
ture of photoionization of vinyl butyrate which has the same frag-
ment in its structure proved that the fragmentation occurs from
9.5 eV by losing m/z 43 (Czekner et al., 2018). Losing the same
group, the peaks atm/z 105 and 175 may also be the results of frag-
mentation of vinyl benzoate (Mw = 148 g/mol) and di-vinyl tereph-
thalate (Mw = 218 g/mol), respectively. On the other hand, the
intensities of major products reach a maximum between 400 �C
and 450 �C and decrease there after which shows either the end
of the pyrolysis or the presence of secondary reactions causing
their intensities diminution. The intensity of terephthalic acid
(m/z 166) decreases slightly between 450 and 500 �C, even so it
becomes the compound with the highest intensity at high temper-
atures, as shown in Fig. 3b).

Possible peak assignments of major compounds are summarized
in Table S1. The mixture mostly contains acids and vinyl end
groups. The same observation was made by (Garozzo et al., 1987)
using electron ionization at low electron energy (18 eV) for copo-
lyesters containing ethylene terephthalate and p-oxybenzoate
units. They studied the on-line pyrolysis coupled tomass spectrom-
etry with a heating rate of 10 �C/min. (Garozzo et al., 1987)
observed the loss of 43 [OACH@CH2] and 17 [OH] mass units, con-
firming the metastable transitions of fragments and indicating the
presence of open chain structures with carboxyl and vinyl end
groups. Each compound corresponding to a specific m/z can be
easily real-time-monitored. The thermal evolution profiles of major
m/z are plotted in Fig. 3c). Acetaldehyde (m/z 44) is the first com-
pound detected by TOF-MS, at about 315 �C, followed by benzoic
acid (m/z 122) at 350 �C. The terephthalic acid (m/z 166) is detected
at 371 �C, 21 �C after the detection of benzoic acid and 7 �C after
benzene (m/z 78). The maximum productions of major compounds
are observed at 431 �C, except for terephthalic acid (m/z 166) which
is observed at 440 �C. Interestingly, the benzene curve shows a bi-
modal emission behaviour in which the maximum of the first peak
is detected at 427 �C and the second maximum at 470 �C. Benzene
goes through aminimumat 447 �C. The same trendwas observed in
(Dhahak et al., 2019) using a horizontal reactor. In this study, online
monitoring of gases (carbon oxides, ethylene and benzene) during
slow pyrolysis (5 �C / min) was performed. Benzene profile also
showed two peaks at 431 �C and 469 �C. The first and the second
peaks may be due to the decarboxylation of benzoic acid and
terephthalic acid, respectively. The production of benzene is accel-
erated at higher temperature, as shown in Fig. 3c).

3.2. Evolved gas analysis by Resonance-enhanced multiphoton
ionization (REMPI) mass spectrometry

Using REMPI, only aromatic species can be detected. However,
aromatic carboxylic acids such as terephthalic acid and benzoic
acid cannot be ionized because of their high ionization energy
(Fig. 1). Benzene, which has a ionization energy of 9.24 eV, also
requires a little more energy to be ionized (�9.5 eV) (Boesl et al.,
1978). Fig. 4a) shows the TIC and DTG curves. Contrary to the
SPI-TIC, REMPI-TIC exhibits a bi-modal behavior as the tempera-



Fig. 3. TGA-SPI TOF-MS results: (a) TGA, DTG, TIC curves, (b) Average mass spectra of the products at various temperatures, (c) thermal evolution profiles of major m/z.
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ture increases. The first peak coincides with the DTG curve,
whereas the second peak appears in a region where the mass loss
is almost finished, indicating the presence of secondary reactions
with a small mass loss. The maximum peaks correspond to
435 �C and 473 �C, respectively. These two peaks highlight the
presence of two different mechanisms responsible for the forma-
tion of aromatic species such as polycyclic aromatic hydrocarbons
(PAHs). REMPI mass spectra are shown in Fig. S1. For both peaks
observed in the REMPI-TIC curve, an average mass spectrum is pre-
sented in Fig. S2. The mass spectrometric pattern is significantly
different when comparing the two stages, and they depend mainly
on temperature. The effect of temperature on the pyrolysis product
intensities is depicted in Fig. 4b). As can be seen, a higher variety of
compounds is detected in REMPI than in SPI. Different series of



Fig. 4. TGA-REMPI TOF-MS results: (a) TGA, DTG, TIC curves, (b) Average mass spectra of the products at various temperatures, (c) thermal evolution profiles of major m/z.
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pyrolysis products are observed at different temperature intervals.
This evolved gas complexity confirms the presence of different and
various reactions involved in the pyrolysis of PET. In fact, between
300 �C and 350 �C, m/z of 274, 298, 264, and 288 are detected with
low average intensities. With the increase of temperature, the
mass spectrum shows other peaks such as m/z of 192, 188, 148,
144, 94, and 162. The m/z of 148, 94, and 162 presumably corre-
spond to vinyl terephthalate, vinyl benzoate, phenol, and vinyl 4-
methylbenzoate, respectively. Using REMPI, compounds with
[OACH@CH2] do not undergo a photo-fragmentation, because of
the low energy. However, their sensitivity of detection by REMPI
is much lower than by SPI.

The signal intensities of aromatic products increase at higher
temperatures. The highest intensities are observed between
400 �C and 450 �C, which corresponds to the maximum decompo-
sition rate of PET. In this phase, the major compounds correspond
to m/z of 188, 198, 172, and 162. At higher temperature (450–
577 �C), other compounds appear such as m/z 254, 228, 178, 230,
166, and 154. Based on literature (Hujuri et al., 2013; Sovová
et al., 2008), those peaks may be attributed to 1,20-
binaphthalene, benzo[a]anthracene, anthracene or/and phenan-
threne, terphenyl, 9H-fluorene and biphenyl or/and acenaphthene,
respectively (Table S1). The presence of PAHs is mainly detected
between 450 and 500 �C, confirming the presence of secondary
reactions and most likely causing the second peak in REMPI-TIC.

The evolution profile of major peaks is shown in Fig. 4c). The
maximum productions of the different aromatics do not occur at
the same time. Terphenyl, which corresponds to m/z 230, approx-
imately appears at 415 �C and reaches a maximum at 477 �C. The
peak at m/z 198, which may probably correspond to biphenyl-4-
carboxylic acid (C13H10O2) (Deng et al., 2006; Guo et al., 2015;
Sovová et al., 2008), evolves starting from 389 �C to 492 �C. Its
maximum production occurs at 439 �C. The evolution profile of
m/z 198 detected by REMPI resembles to the SPI signals (Fig. S3).
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3.3. Evolved gas analysis by TGA-APCI FT-ICR MS

The DTG, TIC, and temperature curves revealed by thermogravi-
metric coupling to APCI FT-ICR MS are shown in Fig. S4. The tem-
poral evolution of the decomposition rate (DTG) is consistent
with the TIC curve, showing a single peak. A similar trend was
observed by SPI-TOF-MS (Section 3.1). The maximum decomposi-
Fig. 5. TGA-APCI FT-ICR MS results: (a) Double bond equivalent (DBE) vs carbon
number plot, b) Van Krevelen plot (H/C vs O/C), (c) Pie chart representing the
compound class distribution. In (a) and (b), the size of the dots is proportional to the
abundance.
tion rate is found at about 417 �C. Typical diagrams are constructed
to facilitate the visualization and interpretation of high-resolution
mass spectrometric data, such as double bond equivalence (DBE)
against carbon number and Van-Kreleven plot. DBE is a measure
of unsaturation (double bonds and rings) in a molecule and con-
tributes to the prediction of the chemical structure from a given
elemental formula. Besides, Van-Krevelen diagram is a graphical
distribution of H/C ratio versus O/C, providing an overall view on
compound categories (Miettinen et al., 2017; Oni et al., 2015).
The evolution of double bond equivalence (DBE) versus carbon
number is shown in Fig. 5.a). It indicates that there are compounds
with DBE values ranging from 2 to 15 and carbon numbers ranging
from C6 to C20. The high DBE values confirm the presence of poly-
cyclic aromatic hydrocarbons. Most of the detected compounds
have a relatively low abundance (in blue color). The highest abun-
dances (red color) correspond to species with a carbon number
C8-C10 and a DBE of 6–7. The core structure of these compounds
is probably based on one benzene ring (DBE of 4) or two aromatic
rings (DBE of 7). Fig. 5.b) represents the Van-Krevelen plot, high-
lighting different compound classes. For instance, a complex mix-
ture of aromatic compounds with expanded oxygen content is
mainly distributed within a H/C range of 0.7–1 and O/C values in
the range of 0.1–0.5, as well as highly unsaturated compounds
(H/C �1.5) and little aliphatic compounds (1.5 � H/C � 2) (Li
et al., 2018). Furthermore, polycyclic and aromatic compounds
without oxygen are also present with H/C � 0.5–1 and account
for roughly 6.4% of the overall signal. The class distribution of
detected species is shown in Fig. 5c). Seven classes are observed
Fig. 6. Average APCI FT-ICR MS spectrum of pyrolysis products of PET.



Fig. 7. Intramolecular possibilities in PET degradation.

Fig. 8. Proposed reaction pathways for the degradation of: a/ vinyl end groups, b/ carboxyl end groups.
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in APCI FT-ICR MS in which the oxygenated category CHOx is the
prevailing class. The most abundant CHOx compounds are those
containing 4 and 3 oxygen atoms with a percentage of 45.5% and
37.6% respectively. Very low abundances of highly oxygenated
compounds (7 and 8) (<1%) are also detected.

An APCI FT-ICR mass spectrum is shown in Fig. 6. A unique
molecular formula is attributed to each peak detected using the
accurate mass measurement.

The species are detected mainly as protonated molecule [M+H]+

and to a part as molecular cation [M]+, where M refers to the
molecule. Seventy-seven peaks are assigned unambiguously in
the 100–400 m/z range. Possible peak assignments of major com-
pounds are summarized in Table S1. The highest intensities are
observed at m/z 193.0495 and 149.0233, corresponding to
C10H9O4

+ and C8H5O3
+ respectively. The peak at m/z 385.0915

(C20H17O8
+) is the highest mass obtained by FT-ICR-MS and may
Fig. 9. Proposed reaction pathways for the degrad
be attributed to cyclic or/and linear dimer (Nasser et al., 2005).
(Ubeda et al., 2018) reported similar results. In their study, they
analyzed the oligomer of PET by using ultra-high-performance liq-
uid chromatography-quadrupole time-of-flight mass spectrome-
try (UPLC-MS-QTOF). They found that the cyclic monomer and
dimer are characterized by an exact m/z of 193.0498 and
385.0915, respectively. Signals corresponding to m/z 219.0652
(C12H11O4

+) and m/z 167.0339 (C8H7O4
+) can be attributed to di-

vinyl terephthalate and terephthalic acid, respectively. The tempo-
ral evolution profiles of the compounds with the highest intensities
are shown in Fig. S5. Peaks at m/z 193.0495 (C10H9O4

+) and
149.0233 (C8H5O3

+) are detected by FT-ICR MS at the same temper-
ature, about 346 �C. Terephthalic acid (m/z 167.0339 (C8H7O4

+)) is
detected at 361 �C. A cyclic dimer (m/z 385.0915 (C20H17O8

+)) and
an anhydride compound at m/z 341.0653 (C18H13O7

+) appear later
at 381 �C (Fig. S6). These compounds are among the primary
ation of: a/cyclic dimer, b/ cyclic anhydride.
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products of the degradation of PET, and their delayed detection may
indicate that they are generated in condensed phase (solid or liquid)
and transferred into the gas phase at higher temperatures.

In the literature, (Dhahak et al., 2020) characterized molecules
formed during PET pyrolysis and analyzed offline by Fourier Trans-
form Ion Cyclotron Resonance Mass Spectrometry (FT ICR–MS)
coupled to electrospray (ESI). Some molecules such as m/z 358
and m/z 550 that had been detected by ESI-FT-ICRMS are not
observed in the present study and this seems to indicate that these
molecules may be formed by repolymerization in the condensers
or in the cold zone. This highlights the strength of online analysis
versus offline analysis.
Fig. 10. Proposed reaction pathways for the degradation
3.4. Possible reaction pathways for PET degradation

Different reaction pathways for PET degradation can be pro-
posed, involving most likely two back-biting possibilities through
a concerted mechanism (Fig. 7). Reaction in Fig. 7a) is more
energetically favorable than the reaction in Fig. 7b), involving the
six-membered cyclic transition state, as reported in previous
studies (Hujuri et al., 2013; Montaudo et al., 1993; Plage and
Schulten, 1990). The transition state energy of dissociation is about
50 kcal/mol (Dayma et al., 2019). It leads to the formation of
carboxyl and vinyl end groups. In the second possibility, PET may
undergo a decarboxylation reaction, producing benzene and vinyl
of: a/benzene end groups, b/ hydroxyl end groups.
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end groups. Vinyl decompose via six-membered cyclic transition
state, as shown in Fig. 8a), producing di-vinyl terephthalate (m/z
218), vinyl terephthalate (m/z 192), as expected (Hujuri et al.,
2013), and other carboxyl and vinyl end groups, having lower
molecular weights. Carboxyl end groups may undergo two differ-
ent reactions Fig. 8b). In fact, a six-membered cyclic transition
state which generates terephthalic acid (m/z 166), vinyl terephtha-
late (m/z 192), and carboxyl and vinyl end groups, according to two
different branches in the same molecule.

Additionally, an intramolecular carboxy-ester interchange may
take place, leading to the formation of cyclic products, such as cyc-
lic dimer (m/z 384), hydroxy and carboxy end groups. (Montaudo
et al., 1993) investigated the direct pyrolysis of PET using negative
chemical ionization. They found that cyclic oligomers are the pri-
mary products at about 300 �C that decompose further by b-H
transfer reactions at 400 �C generating open-chain oligomers with
olefin and carboxylic end groups.

(Samperi et al., 2004) also studied the isothermal degradation of
PET in the temperature range of 270–370 �C using matrix-assisted
laser desorption ionization–time of flight (MALDI-TOF) mass spec-
trometry and NMR analysis. They indicated the formation of cyclic
oligomers, and proposed their structural characterization. Anhy-
drides containing oligomer may also be generated at m/z 340,
which is in agreement with literature (Samperi et al., 2004).

Possible reaction pathways for the degradation of cyclic dimer
and anhydrides are shown in Fig. 9. Six-membered transition state
occurs to generate linear dimer and anhydride. These linear dimers
may undergo carboxy-ester interchange producing cyclic anhy-
drides and acetaldehyde. Fig. 10.a) shows that benzoic acid (m/z
Fig. 11. Formation

Fig. 12. Proposed reaction pathways for
122), vinyl benzoate (m/z 148) and carboxyl and vinyl end groups
can be generated via the six-membered transition in benzene end
groups (C).

In the case of hydroxy end groups, an intramolecular hydroxy-
ester interchange, as shown in Fig. 10b), may occur and produces
cyclic dimer (Murillo et al., 2010). In literature, the presence of
hydroxy end in the structure accelerates the interchange reaction
and favored the formation of cyclic products (Chikh et al., 2003;
Kamoun et al., 2006). Vinyl alcohol (m/z 44) is also generated via
six-membered transition, however, it transforms to acetaldehyde,
which is one of primary volatile products in PET degradation
(Fig. 10b). Among the volatile PET degradation species are ethylene
(C2H4), which is formed with a smaller extent. An intermolecular
reaction through an eight-membered transition between PET and
vinyl end groups is proposed for its formation (Fig. 11) (Levchik
and Weil, 2004).

In addition, tentative degradation pathways of major products
are illustrated in Fig. 12. The routes proposed here are consistent
with themainproducts identifiedby the three techniques. The start-
ing point is the di-vinyl terephthalate (m/z 218). In literature, Taylor
reported various reactions occurred in vinyl acetate decomposition
between 363 and 448 �C (Taylor, 1983). By analogy, every com-
pounds with a [(C@O)O(CH@CH2)] segment undergoes the same
routes.

Traces of acetylene (C2H2) also exists in PET degradation
(Sovová et al., 2008; Turnbull et al., 2013). Unfortunately, it cannot
be detected with the three techniques because of its high ioniza-
tion energy and lower molecular weight. The formation of acety-
lene may be the by-product of vinyl end groups degradation.
of ethylene.

the degradation of major products.
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Polycyclic aromatic hydrocarbons (PAHs), such as biphenyl (m/z
154) and terphenyl (m/z 230), are also presented. They are most
likely produced via benzene.
4. Conclusion

In this study, three different soft ionization mass spectrometric
approaches have been applied, allowing a comprehensive overview
and understanding of the slow pyrolysis of PET in real time. The
originality of this paper firstly lies in on-line monitoring of the
emitted decomposition products and their thermal dependent evo-
lution profiles. Secondly, the combination of these techniques
allows the almost complete identification of volatile species and
therefore, the typical reactions that can occur. TG-SPI-TOF-MS
was used for the description of organic species with ionization
energies below 10.5 eV. This technique showed that the main
major peaks were acetaldehyde (m/z 44), benzoic acid (m/z 122)
and a peak at m/z 149 which is a fragment of the monomer of
PET (m/z 192). Despite the use of soft ionization, some compounds
fragmented with the loss of a [OACH@CH2] fragment. Aromatic
compounds, such as benzene and toluene, exhibited a bi-modal
behavior in their profiles showing the existence of two different
reactions involved in their formation. The second soft ionization
technique used was REMPI-TOF-MS, selective for aromatic species.
REMPI-TIC has the same trend as the benzene profile. Different ser-
ies of pyrolysis products are observed in different temperature
intervals. The main products correspond to m/z 230, 178, and
254. Possible structures were proposed in SPI and REMPI tech-
niques. Additionally, FT-ICR MS was applied, detecting medium-
polar and polar species in a mass range of [100–40]. Compounds
with DBE values ranging from 2 to 15 and carbon numbers ranging
from C6 to C20 were detected. Seven classes were observed in
which the most abundant was CHO4, with a percentage of 45.5%.
Detailed chemical information was gained using FT-ICR exact mass
data. The signals with the highest intensities found in mass spec-
trum are m/z 193.0495 and 149.0233, corresponding to C10H9O4

+

and C8H5O3
+ respectively. Possible structures for some peaks were

suggested, helping the construction of reaction pathways that
showed the formation of both cyclic monomer and dimer and lin-
ear compounds. Typical reactions (intramolecular exchange, via
hydroxy-ester and carboxy-ester interchange and six-membered
transition state, and intermolecular exchange) have been proposed
which may explain the majority of products emitted.
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