

Co-funded by the EU H2020 GA. 723139 and NICT GA. 18301

WP3 Extracting city knowledge for intelligent services

D3.4: Big Data Analytics Framework report -

final release
Grant Agreement N°723139

NICT management number: 18301

BIGCLOUT

Big data meeting Cloud and IoT

for empowering the citizen ClouT in smart cities

H2020-EUJ-2016 EU-Japan Joint Call

EU Editor: ICCS JP Editor: TSU

Nature: Report

Dissemination: PU

Contractual delivery date: 2018-12-31 (M30)

Submission Date: 2019-03-20 (M33)

2

ABS TR AC T

This deliverable consists in a technical report of the final version of Big Data Analytics Framework
of BigClouT that is identified in the general BigClouT architecture and presents in depth the
functional subcomponents of the City Data Processing as well as the integration and
implementation that took place through various use case scenarios.

Disclaimer

This document has been produced in the context of the BigClouT Project which is jointly funded by the
European Commission (grant agreement n° 723139) and NICT from Japan (management number
18301). All information provided in this document is provided "as is" and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability. This document contains material, which is the copyright of certain BigClouT
partners, and may not be reproduced or copied without permission. All BigClouT consortium partners
have agreed to the full publication of this document. The commercial use of any information contained
in this document may require a license from the owner of that information.
For the avoidance of all doubts, the European Commission and NICT have no liability in respect of this
document, which is merely representing the view of the project consortium. This document is subject
to change without notice.

3

REVISION HISTORY

Revision Date Description Author (Organisation)

V0.1 07.12.2018 ToC and Initial Content Orfefs Voutyras (ICCS)

V0.2 19.12.2018 Section 3.1 (final contribution) Savong Bou (TSU)

V0.3 14.01.2019
Sections 2, 3.2 (final contribution),

Section 4 (initial contribution)
Guiseppe Ciulla (ENG)

V0.4 19.02.2019 Section 3.3 (final contribution) Takuro Yonezawa (KEIO)

V0.5 22.02.2019 Section 3.4 (final contribution) George Palaiokrassas (ICCS)

V0.6 08.03.2019 Sections 1, 4, 5 (final contribution) Orfefs Voutyras (ICCS)

V0.7 18.03.2019 Review Giuseppe Ciulla

V1.0 19.03.2019 Final version Orfefs Voutyras (ICCS)

V1.0 20.03.2019 Submission Levent Gürgen (CEA)

4

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 7

1 INTRODUCTION ... 8

1.1 OBJECTIVES AND GOALS OF THE TASK AND DELIVERABLE ... 8
1.2 RELATION TO OTHER WPS AND TASKS .. 8
1.3 METHODOLOGY FOLLOWED .. 8

2 FINAL WP3 ARCHITECTURE .. 10

3 ASSETS AND COMPONENTS ... 13

3.1 STREAMINGCUBE ... 13
3.1.1 Description of Functionalities .. 13
3.1.2 Implementation details and Internal Architecture .. 14
3.1.3 Interfaces and Integration ... 15
3.1.4 Performance, Evaluation and Stress-tests ... 18

3.2 KNOWAGE ... 20
3.2.1 Description of Functionalities .. 20
3.2.2 Implementation details and Internal Architecture .. 22
3.2.3 Interfaces and Integration ... 23
3.2.4 Compliance Tests ... 24

3.3 DEEPONEDGE & GANONYMISER ... 26
3.3.1 Description of Functionalities .. 26
3.3.2 Implementation details and Internal Architecture .. 28
3.3.3 Interfaces and Integration ... 29
3.3.4 Performance, Evaluation and Stress-tests ... 29

3.4 RECOMMENDATION SERVICE .. 33
3.4.1 Description of Functionalities .. 33
3.4.2 Implementation details and Internal Architecture .. 33
3.4.3 Interfaces and Integration ... 38
3.4.4 Performance, Evaluation and Stress-tests ... 38

4 INTEGRATION POINTS & USE-CASES SUPPORT ... 43

4.1 FUJISAWA TRIAL 2: FINE-GRAINED CITY INFRASTRUCTURE MANAGEMENT .. 43
4.2 BRISTOL TRIAL 1: SMART MOBILITY - WALKABILITY AND AIR QUALITY TRIAL .. 44
4.3 GRENOBLE TRIAL 1: BUSINESS EVENTS / TSUKUBA TRIAL 1: PROVIDE INFORMATION IN REAL TIME TO VISITORS.......... 45

5 CONCLUSIONS .. 46

5

LIST OF FIGURES

Figure 1: City Data Processing ... 10
Figure 2: Relations between subcomponents of City Data Processing and Assets Mapping 11
Figure 3: Interactions Among City Data Processing Assets ... 12
Figure 4 What is streamingcube? ... 14
Figure 5 Streamingcube architecture ... 15
Figure 6: input query ... 16
Figure 7: output showing the amount of PM2.5 with respect to different areas 17
Figure 8 VIsualisation of average PM2.5 by charts ... 17
Figure 9 Results in different area aggregating .. 18
Figure 10 Maximum system throughput evaluation .. 19
Figure 11: KNOWAGE - Map Widget ... 21
Figure 12: KNOWAGE - Map Widget with Data .. 22
Figure 13: KNOWAGE Logical Architecture ... 22
Figure 14: KNOWAGE - Roles Authorizations ... 23
Figure 15: KNOWAGE - Predefined Role Types .. 24
Figure 16: KNOWAGE - Recommendation Service Dashboard .. 25
Figure 17: KNOWAGE - Fujisawa Damage Analysis Dashboard .. 25
Figure 18: The Architecture of GAnonymizer ... 29
Figure 19: Preliminary study result. From top row, reconstruction without ESP and with ESP
repeatedly. The leftmost images are the original image. the image includes the large mask (orange)
and the edge mask (red). From left to right, the size of the orange mask is {120, 130, 140, 150,
200} and the distance between image edge and red mask edge of {0, 1, 2, 3, 4} 30
Figure 20: The result of applying GAnonymiser to the urban images. Two left images is in daytime
and two right images is in evening. The upper row is input images and the lower row is output
images. ... 31
Figure 21: Failure examples. (Top) The object was too large, which leads to not detecting the
object. (Bottom) The reconstruction of the big car in the centre is more blurry and coarse than
that of the small cars. ... 32
Figure 22 Overview of the proposed Architecture ... 33
Figure 23: Data Source Node-Red flow handling input from sensors and Open Data, computing and
monitoring specific failsafes and alerting the user accordingly .. 35
Figure 24: Graph Database modeling using time trees and handling big volumes of open data
coming from the city .. 36
Figure 25: Example of 100 to1000 requests – response time on a single server 39
Figure 26: Example of 1000 requests – response time on up to 6 servers-cluster implementation
on a High Avalaibility Neo4j cluster .. 39
Figure 27: Example of 100 to 1000 requests – response time on variety of cluster node
implementations on high availability Neo4j cluster implementation ... 40
Figure 28: Example of 300 to 1000 requests – response time on up to 6 servers – cluster
implementations on high availability Neo4j cluster ... 40
Figure 29: Time reduction percentage on a configuration of 400 to 1000 requests on up to 6
servers - cluster implementations on high availability Neo4j cluster .. 41
Figure 30: Haproxy distributes requests across multiple Neo4j servers, optimising resource use,
maximising throughput, minimising response time and avoiding overload ... 41
Figure 31: Updated Architecture Overview including HAProxy and distributed database 42
Figure 32: Smart Mobility Use Case... 44

6

ACRONYMS

ACRONYM DEFINITION

API Application Programming Interface

CKAN Comprehensive Knowledge Archive Network

CQ Continuous Queries

CSaaS City Software as a Service

CSV Comma-Separated Values

DAG Direct Acyclic Graph

DB Data-Base

DoE Deep on Edge

ESP Edge Shift Padding Layer

GFP Global Feature Padding Layer

GLCIC Globally and Locally Consistent Image Completion

(G)UI (Graphical) User Interface

HTTP Hypertext Transfer Protocol

I/O Input/Output

JSON JavaScript Object Notation

ML Machine Learning

MQTT Message Queuing Telemetry Transport

OLAP OnLine Analytical Processing

REST REpresentational State Transfer

SSD networks Single Shot Multibox Detector

TCP/IP Transmission Control Protocol/Internet Protocol

UC Use Case

URL Uniform Resource Locator

WP Work Package

7

Executive Summary

This deliverable consists in a technical report of the final version of Big Data Analytics Framework
of BigClouT that is identified in the general BigClouT architecture and investigates in depth the
functional subcomponents of the City Data Processing as well as their integration and
implementation through various use case scenarios.

The document aims at presenting in depth the technical details of each and every functionality
offered by the several assets that have been adopted or created under the framework of WP3. The
goal behind following a detailed presentation of the elementary services offered by the several
assets provided by the partners of the consortium was twofold:

 Facilitating the collaboration between technical partners of the project (from both WP2
and WP3), thus supporting the integration plans and actions between the various
components already provided.

 Facilitating the discussions between the pilot partners and technical partners, thus
enabling the demonstration of the several services provided by the project through
various use case scenarios.

Section 2 presents the final WP3 architecture. Section 3 describes in detail all the WP3 elementary
services in a manner that supports the two aforementioned goals (more details in Section 1.3).
Section 4 presents the main integration points that were addressed by this work package and the
corresponding use cases that are supported by them. Finally, Section 5 concludes this report.

8

1 Introduction

1.1 Objectives and goals of the task and deliverable

This deliverable (D3.4) aims at presenting in depth the technical details of each and every
functionality offered by the several assets that have been adopted or created under the framework
of WP3. The functionalities cover four different areas of interest, namely:

1) Data Event Processing,
2) Big Data Analysis,
3) Machine Learning, Predictive Modelling and Decision making,
4) and Visualisation

This categorisation, which is aligned to the tasks of WP3, focuses on the extraction of city
knowledge for intelligent services by providing a common framework:

 T3.1 Big data analytics and business intelligence

 T3.2 Learning , predictive modelling and decision making

 T3.3 Distributed real-time data mining with event detection for actuation

1.2 Relation to other WPs and Tasks

This document is building on top the work presented in “D3.1 Big Data Analytics Framework
Architecture” during the first year of the project and “D3.2 Big Data Analytics Framework
report” and “D3.3 Big Data Analytics Framework Prototype – Demonstration” during the
second year of the project. Finalising the general WP3 architecture, providing the latest technical
details of the several components and focusing on the integration and demonstration of the WP3
services are three of the main differences between this deliverable and the previous ones.

This deliverable is closely related to the deliverables of WP4 (for example “D4.3 Integrated use
cases and first large-scale deployments and experimentation”) as well as the corresponding
technical deliverables of WP2. As it will be made clear in Section 1.3, most of the subsections of
Section 3 are structured in such a manner that they can present all the necessary details regarding
the integration and demonstration activities that took place, while Section 4 provides an overall
view of this implementation.

1.3 Methodology followed

Due to the wide range of services that can be provided under the four main modules of the WP
(Data Event Processing, Big Data Analysis, Machine Learning, Predictive Modelling and Decision
making, and Visualisation), each one of them includes more than one services provided by the
assets of the project. Likewise, due to the wide range of functionalities of the assets and the
modular approach we follow, an asset may appear in more than two categories/modules.

For this deliverable to present all the details related to integration and (integrated)
demonstrations, the elementary services presented in Section 3 adopt the following structure:

 Description of Functionalities: A general description of the main functionalities of the
service/tool is given, as an introduction to its capabilities.

 Implementation details and Internal Architecture: A presentation of the technical
details of the component, sometimes represented by specific subcomponents.

9

 Interfaces and Integration: A presentation of all the UIs, APIs, etc. that can be used to
give input to the module and access its output, thus presenting the possibilities of
interaction with both end-users and other components (in WP2/3).

 Performance, Evaluation and Stress-tests: More technical characteristics, showing how
the module performs when it comes to requirements as presented in past deliverables
(big data, granularity of data, response time, number of nodes that can be managed at the
same time, integration, etc.).

Finally, in Section 4, the final Use Cases that are supported by the WP3 components are presented,
showcasing how the several components interact with each other in real scenarios and how they
provide services of higher value through this collaboration.

10

2 Final WP3 architecture

This section provides information and details about the final version of the sub architecture of
BigClouT City Data Processing module that represents the Big Data Analytics Framework.
Definition of the final version of this sub architecture starts from the final architecture of BigClouT
reported in "D1.4 Updated use cases, requirements and architecture" and from the two
incremental versions reported in "D3.1 Big Data Analytics Framework Architecture" and in “D3.2
Big Data Analytics Framework report - first release”.

Indeed, coherently with the general approach of BigClouT architecture, this sub architecture must
be considered as a reference architecture characterised by flexibility and adaptability that can be
adapted and customised to address specific needs and requirements.

The aim of the final version of this sub architecture is to consolidate the logical organisation of its
macro modules and of the technological assets.

As reported in D3.1, the Big Data Analytics Framework matches with the logical module "City Data
Processing" of the general logical BigClouT architecture (Figure 1) and its subcomponents, except
for the subcomponent "Context Management & Self-Awareness" that is investigated in WP2. More
information about the “Context Management & Self-Awareness” can be found in: “D2.1 Data
collection tools and architecture”, in “D2.3 Self-aware distributed city data platform-First Release”
and in “D2.5 Self-aware programmable city platform - demonstration” WP2 deliverables.

FIGURE 1: CITY DATA PROCESSING

Logical relations among these subcomponents and assets mapping are reported in Figure 2. As
depicted, some assets are reported in more than one logical subcomponents. This is due to the fact
that these assets provide different functionalities that fulfil different aims. For instance,
KNOWAGE provides useful functionalities for both "Big Data Analysis" and "Visualisation"
subcomponents.

In Figure 2, lines of different colours are used only to avoid confusion in the relations depicted in
the figure.

11

FIGURE 2: RELATIONS BETWEEN SUBCOMPONENTS OF CITY DATA PROCESSING AND ASSETS MAPPING

The interactions among City Data Processing assets are shown in Figure 3. In order to give some
insight about the data sources, sensiNact, the BigClouT Data Lake and other entities that can
provide data (such as Fujisawa’s garbage trucks) are depicted in this diagram. These assets
provide historical data or (near) real-time data that are used to produce recommendations,
analysis and visualisations and to detect events. Historical data are gathered through BigClouT
Data Lake taking advantage of its CKAN RESTful APIs. (Near) Real-time data are provided to the
City Data Processing assets taking advantage of sensiNact RESTful APIs and thanks to IoT sensors
deployed in the garbage trucks, in which a specific instance of DeepOnEdge and Ganonymiser
analyses the data and provides its results to the rest of the City Data Processing components.
DeepOnEdge and Ganonymiser outputs are stored in the BigClouT Data Lake and are also
provided in forms of daily CSV files to be used by KNOWAGE and the Recommendation Service as
data source. The recommendations produced by the Recommendation Service are provided to the
rest of the platform thanks to its RESTful API. StreamingCube reads the (near) real-time data from
sensiNact and provides its output to the rest of the platform thanks to its RESTful API and thanks
to its GUI. KNOWAGE analysis results and dashboards are provided to the CSaaS module thanks
to its GUI and RESTful APIs.

12

FIGURE 3: INTERACTIONS AMONG CITY DATA PROCESSING ASSETS

13

3 Assets and Components

This section presents the finalised versions of the several components that have been updated or
developed in order to facilitate the several WP3 functionalities. For each asset, a description of its
main functionalities, implementation and integration details as well as performance results are
given to provide a complete overview of the final results of the WP, from a technical point of view.

3.1 StreamingCube

In most streaming applications, the data streams need to be analysed continuously to make
instant decisions exploiting latest information. Data streams are often multidimensional and are
at the low-level of abstraction, whereas analysts are interested in multi-level interactive analysis
of data streams across several dimensions. On-line analytical processing (OLAP) is a proven
technique for such analysis of static data and has also been studied by some researchers for data
streams. Traditionally, this is achieved by coupling a stream-processing engine with an OLAP
engine. We believe that coupling multiple systems is not an efficient solution as it results in lower
performance (due to the transfer of data between multiple systems), resource wastage (due to
replication of data for each coupled system) and increased complexity and maintenance cost. To
this end, we present StreamingCube1, a unified framework for both data stream processing and
interactive OLAP analysis. StreamingCube possesses all the essential operators to process data
streams and introduces a new operator; cubify, to maintain OLAP lattice nodes (materialised
views) incrementally. The novelty of the cubify operator is the incremental maintenance of the
materialised views. To demonstrate StreamingCube, a web-based GUI has been developed which
enables users to register continuous queries (CQs). Once a CQ has been registered, users can
perform different OLAP operations through the GUI for the interactive analysis. The results of the
OLAP queries/operations are displayed in the form of tables, charts, and graphs.

3.1.1 Description of Functionalities

StreamingCube is a data processing framework that allows OLAP operation over data streams
exploiting off-the-shell stream processing engine (JsSpinner 2) combined with OLAP engine
(StreamOLAP34). The overview of StreamingCube is shown in Figure 4. This system consists of
two main processing components:

 Stream processing component: this component possesses all the essential operators of
JsSpinner to process data streams. It is responsible for continuously generating
aggregation results at some selected aggregation levels using multiple queries. This
component is in charge of providing stream-processing features. Users can register
queries in Jaql-like query language5, thereby making it possible to continuously get filtered

1 S. A. Shaikh and H. Kitagawa, “StreamingCube: A Unified Framework for Stream Processing and OLAP Analysis”, Proceedings of the 2017 ACM

on Conference on Information and Knowledge Management, pp. 2527-2530, Singapore, Singapore — November 06 - 10, 2017.

2 S. A. Shaikh, Y Watanabe, and H. Kitagawa, “Smart Query Execution for Event-driven Stream Processing”, Proc. 2nd IEEE International

Conference on Multimedia Big Data (IEEE BigMM 2016), pp.97-104, Taipei, Taiwan, April 20-22, 2016.

3 K. Nakabasami, T. Amagasa, S. Shaikh, F. Gass, and H. Kitagawa, "An Architecture for Stream OLAP Exploiting SPE and OLAP Engine", Proc.

2015 IEEE International Conference on Big Data (IEEE BigData 2015), pp. 319-326, Santa Clara-CA, USA, Oct.29-Nov.1, 2015.
4 S. A. Shaikh and H. Kitagawa, "Approximate OLAP on Sustained Data Streams", Proc. 22nd International Conference on Database Systems for

Advanced Applications (DASFAA 2017) , pp. 102-118, Suzhou, China, March 27-30, 2017.

5 K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan and E. Shekita, “Jaql: A Scripting Language for Large Scale

Semi-Structured Data Analysis,” PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, vol. 4, no. 12, pp. 1272-

1283, International conference on very large data bases; VLDB 2011.

14

streams. It accepts JSON streams as input and provides output JSON streams, which can
be reused by other systems to get more useful information. Four main functionalities are
provided by this component:

o Data Filtering
o Data Joining
o Event Detecting
o Data Aggregating

 OLAP component: this component possesses all the OLAP capabilities of StreamOLAP for
insightful analysis. It uses the in-memory results from the stream-processing component
to further compute the results at various aggregation levels that are not defined in the
registered queries. Therefore, it can provide more insightful analysed information.

FIGURE 4 WHAT IS STREAMINGCUBE?

3.1.2 Implementation details and Internal Architecture

3.1.2.1.1 Architecture and Query Processing

StreamingCube is a unified framework capable of processing high-speed data streams and
performing interactive OLAP analytics on it. In the following, we will briefly talk about its
architecture and query processing.

Figure 5 depicts the main components of StreamingCube. Users can either register a simple stream
processing query to perform ordinary streaming operations, i.e. selection, filtering, aggregation,
join, etc. or a stream processing query with a cubify operator to create and maintain OLAP lattice
in addition to ordinary stream processing to support different OLAP operations, i.e. roll-up, drill-
down, etc. The presence of cubify operator in the query causes StreamingCube to generate a lattice
structure where each node represents an OLAP query. A lattice may contain a large number of
nodes especially when the number of dimensions is large. Materialisation of all the nodes requires
huge memory and is expensive to compute, therefore only a few nodes are usually materialised
while the queries related to non-materialised nodes are answered from the nearest materialised
nodes. The node at the lowest granularity is always materialised to enable StreamingCube to
answer all the OLAP queries. The dimensions information along with their hierarchies and the
lattice nodes to materialize need to be provided by the end user as a configuration file, which is
supplied as a parameter to the cubify operator.

The registered query is received by the Query Manager. The Query Parser translates the query
into query intermediate representation and sends it back to the Query Manager. The Query

15

Manager forwards the intermediate representation to the Query Plan Manager, which generates
a query execution plan. The query execution plan is in the form of DAG (Direct Acyclic Graph) of
query operators, which is sent to the Operator Scheduler. The Operator Scheduler executes DAG
by selecting one operator at a time. The Wrapper Manager with the help of Schema Interpreter
parses the input data streams into elements (StreamingCube internal data representation). The
operators accept data elements, process them, generate query results and send the results
continuously to the end user and/or aggregate the results based on the nodes selected for
materialization. Once a continuous query including cubify has been submitted, users can issue
OLAP queries for interactive OLAP operations including roll-up and drill-down.

FIGURE 5 STREAMINGCUBE ARCHITECTURE

3.1.2.2 Incremental Computation and View Maintenance

Computation, which updates the output incrementally instead of re-computing everything from
scratch for successive runs of a job with input changes, is called incremental. Similarly, algorithms
that compute changes to a view in response to changes to the base relations are called incremental
view maintenance algorithms6.

To achieve incremental computation in StreamingCube, each stream tuple in the StreamingCube
is additionally tagged as either an insertion (+) or deletion (-). In our unified framework, the tags
are used to incrementally maintain operators’ synopsis and to answer CQL, but also to maintain
the OLAP materialised views incrementally, in addition to operators’ synopsis.

For instance, when a new stream tuple s is read by StreamingCube it is appended with a timestamp
t and a “+” tag, thus forming an element e of the form <s, t, +>. It inserts element e in the window
operator’s synopsis. On the other hand if an old element e’ expires due to the window size, it is
removed from the synopsis. The window then outputs elements <s, t, +> and <s’, t, −>, which are
sent to the downstream operators’ synopsis to reflect the addition and deletion of elements e and
e’ respectively. In the similar fashion, OLAP materialised views are updated incrementally in
StreamingCube.

3.1.3 Interfaces and Integration

6 A. Gupta, I. S. Mumick and V. S. Subrahmanian, “Maintaining views incrementally”, Proceedings of the 1993 ACM SIGMOD international conference on Management

of data, p.157-166, May 25-28, 1993, Washington, D.C., USA

16

3.1.3.1 Interfaces

A Web user interface of this system is provided in order to allow users to submit the queries and
extract results at various aggregation levels (e.g.: roll up, drill down, sum, min, max, etc.). The
results are in form of tables, charts, and graphs. In the context of BigClouT and smart city
management, it can provide insightful analysis of city data so that administrators of a smart city
can monitor current city status more efficiently.

A Web user interface of this system is provided so that users can submit queries to StreamingCube
system as shown in Figure 6.

FIGURE 6: INPUT QUERY

After queries are submitted to the system, the Web user interface is used to extract results at
various aggregation levels. The results are in the forms of tables, charts, graphs, and interactive
city map.

The overview of the analytical result visualisation is shown in Figure 7. The results can be rolled-
up and drilled-down by respectively increase or decrease the number of dimensions. Similarly for
the time dimension, by respectively select hour, minute, and second, the results are aggregated
and updated in real time per hour, minute, and second respectively.

The table in Figure 7 (top left) shows the analysis results in real time of the selected dimensions
(e.g., area) w.r.t. the time (e.g. second). The chart on the top right visualises the results based on
both the selection dimensions (e.g., area) and time. It shows the percentage of the combined
dimensions of all valid data that has been received so far. To meet different needs of the users,
StreamingCube provides a wide range of charts for interpreting the results. All available charts
(Bar, Column, Area, Spline, Pie, and Doughnut) are shown in Figure 8. The bar chart on the bottom
left (Figure 7) shows the analysis results w.r.t. the time dimension regardless of other dimensions.

The interactive map (bottom right in Figure 7) visualises the results to an interactive Google map,
which is explained in Figure 9.

17

FIGURE 7: OUTPUT SHOWING THE AMOUNT OF PM2.5 WITH RESPECT TO DIFFERENT AREAS

FIGURE 8 VISUALISATION OF AVERAGE PM2.5 BY CHARTS

18

Figure 9 shows the results on the interactive city map with respect to the chosen dimensions (e.g.,
area). Note that, different areas are highlighted in different colours. The areas with location
markers represent the active areas with analysis results. The labels of location markers on the
map consist of two pieces of information, which are separated by colon: (1) Area name (left-hand
side of colon), and (2) Analysis result values (right-hand side of colon). In addition, the results can
be drilled down further at different timestamps by clicking on the location marker. This
visualisation of analysed results is useful because it is easy to understand and interpret by the
average city citizens, and the detailed aggregating results can be viewed very conveniently.

This application can also track the real-time movements of moving objects, such as people, cars,
etc. (right hand-side in Figure 9). Different colour-lines represent the routes of different moving
objects. The icon is placed on the current locations.

FIGURE 9 RESULTS IN DIFFERENT AREA AGGREGATING

3.1.3.2 Integration

I/O manager of StreamingCube is responsible for dealing with and accepting/sending data
streams from the City Resource Access module of the BigClouT architecture. City data from the
City Resource Access module is accessible by either HTTP request or REST API. Thanks to the well-
defined I/O manager, StreamingCube can connect with City Resource Access module with
minimum customisation to the I/O manager by either:

1. Direct Connector: Directly add functions to the I/O manager of StreamingCube to
read/access city data from the City Resource Access module.

2. Socket Stream Connector: The City Resource Access module directly sends the city data
to StreamingCube.

Both approaches can be done either in a synchronous way (client/server mode) or in an
asynchronous way (publish/subscribe mode) by requesting or subscribing for city data from the
City Resource Access module.

Notice that, the above methods require the registration of schema of the city data to the I/O
manager of StreamingCube. The schema is in JSON format textual document. In addition, I/O
manager is also responsible for dispatching the output of StreamingCube to other logical
subcomponents of the City Data Processing.

3.1.4 Performance, Evaluation and Stress-tests

StreamingCube can efficiently process large-scale city data. Stress tests were performed and the
results are shown in Figure 10. The tested queries involve joining two different streams. As it can
be seen, StreamingCube (Smart Scheme), two execution modes of which are shown in the figure,

19

can efficiently process data streams with more than 100k tuples/s, which is good enough for real-
life big data processing for BigClouT.

FIGURE 10 MAXIMUM SYSTEM THROUGHPUT EVALUATION

20

3.2 KNOWAGE

KNOWAGE7 is a suite for Business analytics, it is freely available by downloading the Community
Edition (KNOWAGE CE) or it is possible to exploit its advanced features by subscribing to the
Enterprise Edition (KNOWAGE EE). This section of the document refers to KNOWAGE CE version.

KNOWAGE allows to interact with traditional data sources and Big Data sources in order to
perform analysis such as data extraction and correlation. The visualisation of an analytical process
is performed by defining a so-called Analytical Document. Analytical Documents group under a
common concept the different types of documents that can be developed with KNOWAGE. An
example of Analytical Document is a Cockpit which is used to build dynamic dashboards. Every
Analytical Document has its own peculiarities and must be created and configured following a
specific wizard. More details can be found in KNOWAGE CE’s manual8.

3.2.1 Description of Functionalities

The aim of this subsection is to provide an overview of the main functionalities offered by
KNOWAGE. In particular, subsection 3.2.1.1 describes the main analytical functionalities such as
Data Source Definition, Dataset Definition and the definition of Filters. Subsection 3.2.1.2
describes the visualisation functionalities giving some insight about the cockpit document
definition.

3.2.1.1 Analytical Functionalities

In order to perform analysis, KNOWAGE mainly relies on the concepts of Data sources and
Datasets.

A Data Source is a connection to a system, such as a DB, used by KNOWAGE to retrieve datasets.
KNOWAGE supports SQL and NoSQL DB and Big Data sources (for instance: MySQL9, MongoDB10
and Apache Hive11). One of the advanced Data Sources features provided by the suite is the
possibility to set a data source as an internal cache that is used to store the intermediate analytical
results in order to ease the visualisation or further analysis on the data.

A Dataset is the portion of data used to perform analysis. Datasets can be retrieved by querying
the previously defined Data Sources following the specific query syntax or from external data
providers, for instance by uploading a CSV file or by retrieving the data from a RESTful API.
Advanced features related to datasets are the explicit persistence of their data in the cache or the
application of the pivoting transformation. Moreover, KNOWAGE allows to create a Federation of
Datasets combining two or more heterogeneous datasets, coming from different data sources or
external data providers, in a common model. Specific Dataset Types supports the definition of
parameters. This functionality gives the chance to guide the analysis by filtering, for example, the
data used in an Analytical Document dynamically.

Further details are provided in “D3.2 Big Data Analytics Framework report –first release” and
“D3.3 Big Data Analytics Framework Prototype – Demonstration”.

3.2.1.2 Visualisation Functionalities

7 https://www.knowage-suite.com
8 https://knowage-suite.readthedocs.io
9 https://www.mysql.com/
10 https://docs.mongodb.com/
11 https://cwiki.apache.org/confluence/display/Hive/Home

https://www.knowage-suite.com/
https://www.mysql.com/
https://docs.mongodb.com/
https://cwiki.apache.org/confluence/display/Hive/Home

21

This section is intended to give a general overview of the Cockpit document describing its main
features and the widget it provides.

A Cockpit document allows a user to build complex, dynamic and multi-sheet visualisation of data
by simply creating and configuring different widgets, defining the associations among them so
that by clicking on a widget, other widgets will dynamically be updated. In order to start building
the cockpit the user should choose one or more datasets to be used by the widgets and manage
the association among their fields, if needed. Among the several widgets it provides, one of the
most important is the Chart, KNOWAGE provides several charts in particular: Bar, Chord, Gauge,
Heatmap, Line, Parallel, Pie, Radar, Scatter, Sunburst, Treemap and Wordcloud. Every chart can
be customised following the specific needs of the analysis.

The Map widget allows to visualise data in a map (Figure 11). In order to be used in a map widget,
it is mandatory that the Dataset has a field configured as Spatial Attribute. This can be a comma
separated string with latitude and longitude of a point or a complex GeoJSON feature.

FIGURE 11: KNOWAGE - MAP WIDGET

The other datasets fields are used to display measures in the map, if a field is configured as a
Measure, or to show the details of the feature in a popup window, if a field is configured as an
Attribute or a Measure. An example of a complex Map widget is depicted in Figure 12, where a
heatmap is built taking advantage of KNOWAGE visualisation functionality.

22

FIGURE 12: KNOWAGE - MAP WIDGET WITH DATA

3.2.2 Implementation details and Internal Architecture

KNOWAGE logical architecture (Figure 13) is layered on three main levels:

 Delivery Layer: which, manages the access to KNOWAGE’s functionalities through its GUI
or its RESTful APIs.

 Analytical Layer: which provides analytical features and capabilities, managing the
access to the platform in a role-based mode.

 Data Layer: which manages the access to data through the definition of Data Sources and
Dataset, leveraging the access to SQL, NoSQL and Big Data data sources.

FIGURE 13: KNOWAGE LOGICAL ARCHITECTURE

23

The framework is developed with Java and its front-end application takes advantage of
AngularJS12 framework. Connection with Data Sources is managed with Hibernate13 framework.
The framework used to produce charts is Highcharts JS14 or Chart.js15, depending on the library
chosen during the installation. Resulting charts could differ depending on the library.

3.2.3 Interfaces and Integration

KNOWAGE’s functionalities can be accessed through its GUI. Depending on the role of the user and
the authorization assigned by the administrator of the platform, the logged user would be able to
manage or use different KNOWAGE’s module and process. The administrator of the platform will
be able to manage the entire platform managing, for instance, its Behavioural Model.

The Behavioural Model is one of the most important topics in every KNOWAGE instance. It is
based on four main concepts:

 User profile: which allows to define the user’s roles and attributes;

 Repository rights: which allows to define the user’s rights configuring the accessibility
to documents or functionalities of the platform;

 Analytical drivers: which allows to define the portion of data of a document can be shown
to a user depending on his/her role in the platform;

 Presentation environment settings: which allows to define how a user can reach and
execute his/her documents.

KNOWAGE gives the chance to an administrator to define several roles in the platform, configuring
a specific Behavioural Model for each role. For instance, Figure 14 shows, in the left panel, the
defined roles in a demo instance and, in the right panel, the specific authorization assigned to the
role.

FIGURE 14: KNOWAGE - ROLES AUTHORIZATIONS

Every custom defined role must belong to a specific role type. A role type is a high-level
categorization used by the platform to map specific functionalities of the platform to the custom
defined role.

12 https://angularjs.org/
13 http://hibernate.org/
14 https://www.highcharts.com/
15 https://www.chartjs.org/

https://angularjs.org/
http://hibernate.org/
https://www.highcharts.com/
https://www.chartjs.org/

24

FIGURE 15: KNOWAGE - PREDEFINED ROLE TYPES

Any additional details about Behavioural Model are provided in the official documentation16.

KNOWAGE exposes also RESTful APIs in order to, for example, create, update or list dataset and
documents. The full list of the available APIs and their details are accessible in a dedicated
Apiary17.

3.2.4 Compliance Tests

This section of the document covers the conformance and integration tests performed using both
WP2 and WP3 assets. Thanks to the several Dataset types, KNOWAGE is able to connect with:

 BigClouT’s Data Lake: this component is part of WP2 and, to use its data for analysis and
visualisation in KNOWAGE the CKAN connector is used;

 Edge Storage: this component is part of the WP2 and the connection to this asset is
performed taking advantage of its CDMI RESTful interfaces. Indeed, KNOWAGE has a
specific REST connector able to retrieve data from web services;

 DeepOnEdge: this component is part of WP3. The integration with this asset is performed
taking as input the CVS file it produces, load this file into KNOWAGE thanks to its FILE
connector and use this file for further analysis and visualisations;

 Recommendation Service: this asset is part of WP3. As for the Edge Storage component,
the Recommendation Service exposes its functionalities through RESTful APIs. By using
KNOWAGE’s REST connector it is possible to query the Recommendation Service and to
retrieve the data.

In order to speed up analysis and visualisation, KNOWAGE caches the Datasets data and metadata
avoiding retrieving data in real time. This feature is helpful for large dataset, as the ones retrieved
from the BigClouT’s Data Lake. KNOWAGE’s cache cleaning operation is temporized and the time
interval can be configured through a configuration parameter. This feature deletes every cached
version of a dataset older than the time interval, so if a user would use the cleaned dataset,
KNOWAGE would have to reload the dataset from the data source. In order to avoid this behaviour
one of the advanced Dataset’s feature is the persistence of the dataset in a specific database
configured for this purpose. By persisting the dataset, the framework will use its persisted version
speeding up the analysis and the visualisations.

16 https://knowage-suite.readthedocs.io/en/latest/administrator-guide/behavioural-model.html
17 https://knowage.docs.apiary.io

https://knowage.docs.apiary.io/

25

FIGURE 16: KNOWAGE - RECOMMENDATION SERVICE DASHBOARD

Figure 16 shows an example of dashboard built taking advantage of the dataset retrieved through
the Recommendation Service. This example scenario depicts a hypothetical dashboard to check
information about energy consumption in houses. The right panel helps to choose the value of
several parameters: the user, the day and the hour. By clicking on the execute button KNOWAGE
executes a real time query on the Recommendation Service component retrieving the requested
data and visualising the results.

The CSV daily files produced by DeepOnEdge are analysed and used to create a dynamic
dashboard that helps Fujisawa municipality officers to check the most damaged areas in the city
in order to schedule the maintenance operations. The punctual measures are aggregated,
classified and used to create the dynamic dashboard depicted in Figure 17.

FIGURE 17: KNOWAGE - FUJISAWA DAMAGE ANALYSIS DASHBOARD

26

3.3 DeepOnEdge & GAnonymiser

DeepOnEdge is a tool that enables edge devices to analyse road damage condition with low
computational resources. The specific component has been presented with a lot of detail in “D3.2
Big Data Analytics Framework report” as well as “D3.3 Big Data Analytics Framework Prototype
– Demonstration”.

In addition to DeepOnEdge, in this version of the document we present GAnonymiser, a
component that removes privacy-related objects from captured images on edge devices. This
section presents in detail GAnonymiser and how it is related to DeepOnEdge.

3.3.1 Description of Functionalities

GAnonymiser automatically detects and removes objects related to privacy (such as persons and
cars) from an image. GAnonymiser composes of two machine learning networks: a privacy
detection network and an object removal network. The privacy detection network detects objects
related to privacy such as persons and cars from an image. The object removal network removes
the detected objects naturally as if they did not exist in the first place. To combine these two
networks, we developed an Edge Shift Padding Layer (ESP) and a Global Feature Padding Layer
(GFP) between the two networks in order to adapt GAnonymiser to the characteristics of the
images of the city and enable GAnonymiser to remove objects more “naturally”. ESP helps
GAnonymiser to remove objects placed at the edge of an image and GFP helps GAnonymiser to
remove large objects in an image. In our experiment, we adapt GAnonymiser to anonymise videos
(5246 images) taken from a car running in Fujisawa city, Japan. The implemented GAnonymiser
detects and removes persons, cars, buses, bikes, and bicycles as the targets of objects related to
privacy based on the features of the video. We confirmed that our method contributes to removing
privacy-related objects.

Background of GAnonymiser

By analysing a large dataset of urban video images, we can understand context of the city. For
example, that is the case with DeepOnEdge (as described in previous deliverables) where it
becomes possible to automatically detect blurred lines and signs on the road. DeepOnEdge also
proved that leveraging video images of dashcams on public city garbage trucks can cover the
entire area of city. Moreover, the method of detecting damage on a road through smartphone has
also been proposed. The method used the light model MobileNet SSD as an object detection
network and trained the model with the dataset annotated with damages on a road. Furthermore,
the method proposed the smartphone application that automatically detects damages on a road
using its camera in real time and also opened the dataset used in the model training to the public.
These methods of analysing urban images enable us to automatically monitor urban
infrastructure. Not only urban infrastructure context, but also seasonal changes can be analysed
by urban video images. For example, Morishita et al.18 proposed SakuraSensor which extracts and
shares information of flowering cherries along roads, by using smartphone cameras on cars. These
existing works presented usefulness of urban video images - we can extract various city context
by sharing and analysing urban video from many vehicles.

Although we can analyse video images on edge side and share only the result of the analysis, some
application scenarios such as efficient road damage management require to share video images
themselves. After asking city officers of the road management section in Fujisawa city, Japan,
about how automatic road damage detection technique could be useful for actual road
management, it was realised that automatic road damage indexing of the whole city is very useful,

18 https://dl.acm.org/citation.cfm?id=2804273

https://dl.acm.org/citation.cfm?id=2804273

27

but it is still necessary to check actual road images by human eyes for deciding which road should
be repaired. Thus, we still have necessity to share urban video images. Moreover, access to this
kind images video image datasets could be valuable for various researchers that want to evaluate
various image analysis methods.

When sharing urban video images, the main obstacle is the privacy concern. Many companies and
cities own urban video data, and the data must be useful for opening/sharing to analyse city
infrastructure and seasonal change of the environment. However, since urban video contains
privacy data such as persons and cars, it is difficult to open/share the data widely. In addition, in
Europe, the General Data Protection Regulation (GDPR) recently came into force. Therefore, a
privacy protection mechanism for urban video images is crucial to enable video sharing.

There are two main steps to protect privacy related data included in a video. The first step is to
remove privacy-concern data in the video. This can be achieved by removing video frames which
contain privacy data, or by anonymising privacy data such as masking with mosaic pixels. The
second step is to secure the video sharing process. This can be achieved by using encrypted
communication and enhancing traceability. In the following subsections we focus on the first step
- how we can remove privacy data from urban video images. This step is considered the most
important one, since it reduces privacy invasion risk as much as possible: even if the video data
are stolen in the video sharing process, the actual privacy related data are removed.

Anonymisation Level

To remove privacy data from the urban video images, we considered the anonymisation method
by referencing the definition of Chinomi et al19. Chinomi et al. defined the anonymisation of images
as the process of reducing the concreteness of objects related to privacy. They also defined several
anonymisation levels such as cases where it is possible to mosaic or black out objects which are
related to privacy data. In their definition, the abstract degree should be carefully selected,
considering the opinion of the user of images and the subjects of images. However, urban images
include an unspecified large number of subjects, and as such, we cannot consider the opinions of
all of them. Moreover, in the case of monitoring the city's infrastructure, objects related to privacy
such as people and cars are not required. Meanwhile, according to the definition of Chinomi et al,
removing objects from the images is the most anonymised level (transparency). Therefore, based
on their definition, our goal is to make objects related to privacy transparent by removing them
naturally.

Urban Video Anonymisation Task

Simple anonymisation method cannot be adopted to mobile urban video images. One of the major
anonymisation methods is utilising background subtraction. By subtracting the current video
frame from the previous video frame, we can acquire an area where something changed and
where nothing changed. Then, the changed area is replaced with the same area from another
frame where nothing appears. While the background subtraction method suits for the video from
a fixed-point camera, it does not work at mobile urban videos. This is due to the characteristic of
the video being taken by a mobile camera, which differs from that of a video taken by a fixed-point
camera: the background is not always the same. Thus, in order to anonymise the various urban
videos including mobile cameras, we have to adopt the way which uses not multiple frames but
only one frame.

Additionally, there is another characteristic of the urban videos: the kind, the size and the position
of the object which appears in it might be very diverse. This characteristic makes it difficult to

19 Chinomi, K., Nitta, N., Ito, Y., Babaguchi, N.: Prisurv: privacy protected videosurveillance system using adaptive visual
abstraction. In: International Conferenceon Multimedia Modeling. pp. 144–154. Springer (2008)

28

apply the way to detect and remove the target objects such as the pattern/template matching
method. Therefore, we have to adopt the method which is flexible to detect and remove various
privacy-related objects. After detecting and removing the objects, we have to embed an
appropriate image to be natural in the area where the objects have appeared.

In summary, we treat the urban video anonymisation as an object removal and background
completion task.

3.3.2 Implementation details and Internal Architecture

In order to tackle the privacy-related object removal and background completion task, we
propose an anonymisation method, called GAnonymiser, which consists of two parts of
neural networks. In this section, we explain the architecture of GAnonymiser and the new
layers that we propose to complete the background to be more natural.

Network Architecture

The architecture of GAnonymiser is shown in Fig. 22. In order to detect the target objects from the
input image (which might violate the privacy) we adopt the deep neural networks Single Shot
Multibox Detector (SSD)20. SSD is one of the popular models that can detect the object with high
accuracy. More specifically, we select SSD512 which is the variant SSD model and performs better
than any other. Since the target objects are general and those are contained in the PascalVOC
dataset, we use the model weights which are trained by PascalVOC.

After the target objects are detected, GAnonymiser replaces the area where the target objects is.
Although there are a lot of completion methods using computer vision technology, such as PriSurv
and PatchMatch, the result images are not realistic and are unnatural. On the other hand, the in-
painting methods which are adopted by the deep neural networks succeed in generating more
realistic and natural images. For GAnonymiser, we adopt the Globally and Locally Consistent
Image Completion (GLCIC)21 model, which is one of the most successful models in image
completion.

GLCIC is based on generative adversarial networks (GAN) and consists of three networks: the
completion network, a local discriminator network, and a global discriminator network. Since
GLCIC requires an image and a corresponding binary mask for its input, GAnonymiser creates the
mask based on the bounding boxes which are the outputs from SSD512. Then, GLCIC reconstructs
the mask part of the input image based on the whole image and is trained by the procedure of
GAN. The local discriminator assesses the quality of the mask part of the image which is completed
by the completion network. Simultaneously, the global discriminator assesses the quality of the
entire image which is completed by the completion network. The training is terminated when the
discriminator networks cannot distinguish between the original input image and the image which
is reconstructed by the completion network, that is, the completion network becomes able to
reconstruct the mask part of the input image realistically and naturally.

In terms of object removal, it is significant to naturally reconstruct masks based on the various
backgrounds of the images. Hence, for our GLCIC, we apply the model trained with the places
dataset, which contains the pictures of the various places, so that it can reconstruct the mask more
naturally.

20 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: Single shot multibox detector. In: European
conference on computer vision. pp. 21–37. Springer (2016)
21 Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Transactions on Graphics
(TOG) 36(4), 107 (2017)

29

FIGURE 18: THE ARCHITECTURE OF GANONYMIZER

Auxiliary Context Layer

With the architecture of GAnonymiser, most of the urban videos are anonymised effectively.
Nevertheless, there are some cases that fail to anonymise well; failure cases occur when the size
of the mask is too large or it is placed at the edge of the image. The more the objects approach to
the camera, the larger the size of the mask becomes. It is difficult to reconstruct these large masks
since GLCIC reconstructs them by using the context of the areas surrounding the mask via
convolutional operations; there is no information about the centre of the large mask for re-
construction. In order to solve these problems, we propose the information padding layers, edge
shift padding layer and global feature padding layer that are inserted between SSD512 and GLCIC.

Edge Shift Padding Layer

To reconstruct the mask which is placed at the edge of the image, we define the edge shift padding
layer (ESP). ESP copies several pixel rows to the outside of an image. When the edge of the mask
is not adjacent to the edge of the image, the pixel rows at the edge of the image are copied. By
applying ESP, the input image is extended to the edge side, so that the mask can receive the
information from all direction.

Global Feature Padding Layer

In order to cope with the large mask, we also propose a global feature padding layer (GFP), which
has two steps. The first step is to resize the input image into small images so that the size of mask
is enough to be able to reconstruct directly and naturally, and then reconstructed. In the next step,
the part of a reconstructed mask is extracted as a mesh pattern to use for the information to be
completed. GFP makes it easy for GLCIC to reconstruct the large mask thanks to the mesh pattern.

3.3.3 Interfaces and Integration

We implemented GAnonymiser as command-based executor with python language. With the
Distributed Node-RED integration in BigClouT project, we leverage our implementation with
Python enabler of Node-RED. Thus, we integrated GAnonymiser within Node-RED environment.

3.3.4 Performance, Evaluation and Stress-tests

In order to determine some parameters of pre-processing and present its effect, we conducted the
preliminary experiments. In the preliminary study, we use a road image extracted from the
dataset and a pure white image for clearly visualising the result. The size of both images is
400x400.

30

Edge Shift Padding. In order for ESP to effectively assist the generation of natural images from
edge masks, we verify the following two points. First, we look for enough pixels on the edge for
the GLCIC to reconstruct the edge mask. Next, based on that, we find the optimal number of pixels
for edge padding In order to verify the above two points, we conducted two experiments. First,
we performed GLCIC to the mask the distance of which is from 0px to 10px. When the distance is
2px or less, the reconstruction result of the edge mask is not natural due to the lack of surrounding
area’s information, while the reconstruction result is natural when the distance is 3px or more.
Then, we performed each ESP in which the padding pixels are random, random pixels in an image,
the pixel at the edge of an image, and the pixels on opposite side across the mask. ESP is applied
to the mask the distance of which is 3px or less and we adopt 4px for the pixel of the edge padding
so that we can generate a natural image from the edge mask.

Global Feature Padding. We need to examine the size of the mask where GL- CIC can directly
generate naturally so that GFP can help GLCIC generate a natural image from a large mask. In this
experiment, we directly reconstruct the large mask the size of which is from 50px to 200px at
intervals of 10px using GL- CIC. The result was realistic enough when the size was 120px or less,
while it was not when the size was 130px or more. Meanwhile, regarding the way of dividing the
mask, when the method that finely divides the mask (in e.g. 16 divisions) is used, the influence of
the lattice between divided small masks is too large. When the method coarsely divides the mask
(e.g. in 4 divisions) the influence of the lattice is too small. Therefore, the GFP applied to the mask
the size of which is 130 px or more and we adopted the 9 divisions to divide it, so that we could
improve the reconstruction of a large mask.

FIGURE 19: PRELIMINARY STUDY RESULT. FROM TOP ROW, RECONSTRUCTION WITHOUT ESP AND
WITH ESP REPEATEDLY. THE LEFTMOST IMAGES ARE THE ORIGINAL IMAGE. THE IMAGE INCLUDES
THE LARGE MASK (ORANGE) AND THE EDGE MASK (RED). FROM LEFT TO RIGHT, THE SIZE OF THE

ORANGE MASK IS {120, 130, 140, 150, 200} AND THE DISTANCE BETWEEN IMAGE EDGE AND RED MASK
EDGE OF {0, 1, 2, 3, 4}

31

Images for Anonymisation

In our experiments, the data are the images taken from an iPhone7 on a car running in the
Fujisawa city, Kanagawa, Japan. The total number of frames used in the experiment is 5246, and
the size of each image is 1080 x 1920 without resizing. We use the images taken during daytime
and the evening, when the field is clear and there is risk of privacy invasion. We select persons,
cars, buses, bicycles, and bikes as the objects related to privacy, considering the features of the
urban images.

Results

Figure 20 and Figure 21 show the results of applying GAnonymiser to urban images during
daytime and the evening. The results in Figure 20 show that GAnonymiser succeeded in removing
persons and cars naturally from the image. ESP removed the objects appearing at the edge.
Moreover, the GFP improved the reconstruction of the large mask. However, as shown in the left
of Figure 21, the detection was difficult in the case that the object appears too large, or the object
appears small. Although the GFP tackled the problem of reconstructing a large mask, the result of
removing a large object is still blurry and coarse compared to the result of removing small objects.
We could remove objects related to privacy, while there are some bad results where some objects
are not detected or are not naturally removed. The experiment was conducted on an Intel Xeon
CPU E 5-1680 v 3 @ 3.20 GHz.

FIGURE 20: THE RESULT OF APPLYING GANONYMISER TO THE URBAN IMAGES. TWO LEFT IMAGES IS IN
DAYTIME AND TWO RIGHT IMAGES IS IN EVENING. THE UPPER ROW IS INPUT IMAGES AND THE LOWER

ROW IS OUTPUT IMAGES.

32

FIGURE 21: FAILURE EXAMPLES. (TOP) THE OBJECT WAS TOO LARGE, WHICH LEADS TO NOT
DETECTING THE OBJECT. (BOTTOM) THE RECONSTRUCTION OF THE BIG CAR IN THE CENTRE IS MORE

BLURRY AND COARSE THAN THAT OF THE SMALL CARS.

Discussion

In terms of the privacy-related objects detection, we can effectively detect multiscale objects
related to privacy by using the highest accuracy SSD model. However, in the case that a privacy
object is extremely close or far, it was difficult to detect objects related to privacy. Figure 21
presents such examples of such misses. When the object is far, detection failure is not a problem
because the object does not appear clearly. On the other hand, when the object is close, privacy
problems happen by failing detection. However, detecting a too close object is difficult, especially
when the entire figure of the object is not visible. There is a possibility that adopting the
segmentation method can solve this problem. Segmentation categorises the pixels into several
classes so that it is more likely to partially detect objects. Therefore, it is likely to improve the
detection accuracy by using segmentation instead of object detection or combining them, so
integrating it to GAnonymiser is one of the future works.

In terms of the object removal, we could reconstruct most masks naturally except for too large
masks. Moreover, the two auxiliary context layers help GL- CIC to reconstruct difficult masks
naturally. Although reconstructing a large mask was improved by the GFP, the reconstruction
results of the large mask parts are still blur and coarse compared to that of the small mask parts,
as shown Figure 21. However, the models based on GAN have the limitation of the size of natural
reconstruction. Kingma et al. have proposed Glow that can generate high resolution images22.
Therefore, it is also part of future work to apply Glow image reconstruction in order to naturally
reconstruct masks of any size.

22 Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039
(2018)

33

3.4 Recommendation Service

3.4.1 Description of Functionalities

This service provides recommendations to end users/citizens in several application settings such
as transportation management, energy consumption, public safety, supply chain management,
tourism services, air and sound pollution management and many others.

3.4.2 Implementation details and Internal Architecture

Recommendation Service can be applied in different domains. To better explain its
implementation and its internal architecture, a scenario about a smart-mobility is taken into count.

As shown in Figure 22, the Recommendation Service consists of three independent components:

i) the Recommender Application with a Front-End and Back-End which handles the interactions
with the user and delivers routing suggestions to the user i.e. shortest path and green path;

ii) the Neo4j Graph Database;

iii) the IoT Node-Red Flows component which wires together the different hardware devices,
APIs and web services, connecting the distributed components, sensors into a common IoT
application. The latter component mainly contains the two flows presented below.

It is important to underline that all three components are independent; this represents an
important feature for possible extensions and scalability.

FIGURE 22 OVERVIEW OF THE PROPOSED ARCHITECTURE

Data Source Flow

The first Node-Red flow, called the “Data Source Flow”, handles the input of the data from different
sources. In order to effectively transmit data that are being exchanged between the sensors as
well as the main system, the MQTT protocol23 is utilised. MQTT is a lightweight publish and
subscribe messaging protocol for use on top of the TCP/IP protocol, and is ideal for use with low
power sensors with limited resources. MQTT is based on the principle of publishing messages and
subscribing to topics. More specifically, in our scenario, sensors behave as clients who connect to

23 http://mqtt.org/

http://mqtt.org/

34

a broker and publish messages to topics, while the broker enables the connection, acting as a
common interface. The data in the MQTT broker are transmitted using a simple JSON format.

An example of a JSON message regarding air quality used in a smart-mobility scenario, its format
and included information is presented below:

 {

 fields:

 {

 datestart: "2019-01-01T00:00:00+00:00",

 no: 39.22,

 geo_point_2d:

 [

 double latitude,

 double longitude

],

 siteid: integer,

 location: "String description of the location of interest",

 nox: 132.83,

 no2: 65.15

 },

 geometry:

 {

 type: "Point",

 coordinates:

 [

 double coordinate1,

 double coordinate2

]

 },

 record_timestamp: "2019-01-01T00:00:00+00:00"

 }

35

Different kinds of devices are being used in this implementation such as sensors.

We have implemented a Node-Red MQTT node to effectively gather, process and republish data
to the connected services or brokers when required. Before actually forwarding them, the Data
Source Flow performs a first level processing of the data in order to calculate specific failsafes for
the data.

More specifically, a Generic Data failsafe is being calculated, counting the number of
measurements we receive from each sensor in a specific timeframe, ensuring that they are above
a certain numerical threshold, thus ensuring the validity of their frequency. In addition, a series
of failsafes concerning the temperature data are being calculated, such as failsafes to locate
measurements below the absolute zero or above a selected high temperature (70 oC), which would
indicate a malfunction in the sensor.

FIGURE 23: DATA SOURCE NODE-RED FLOW HANDLING INPUT FROM SENSORS AND OPEN DATA,
COMPUTING AND MONITORING SPECIFIC FAILSAFES AND ALERTING THE USER ACCORDINGLY

Graph database Modelling - Heating schedule management

The implementation is based on a state-of-the-art smart city application, which is based on open
data captured by the city IoT infrastructure and user generated content in terms of smart mobility
and route planning and user’s profile. Such an application is regarded as a smart city application
for a particular city context.

The open data that are being deployed refer to:

i) weather conditions as collected by the weather stations (measuring wind speed, rainfall,
humidity and temperature)

ii) weather forecast for a certain period
iii) air quality measurements such as NO, NOx, NO2
iv) road disruption data such as traffic jams in specific parts of the city in the form of a

timestamp, some text describing the problem, geographical coordinates and severity
v) user preferences

The user provides details regarding the starting point and the desired destination. The system,
taking into consideration these features, makes complex queries to a graph database to collect
related information and produces personalized recommendations for the specific user, producing
routes.

One of the most remarkable features of a graph database, which is also crucial for our
implementation, is its effectiveness into handling big volumes of information with real-time

36

response to queries. Our system, based on a highly scalable graph database, processes in real-time
simple and complex questions such as “What is the temperature on a specific day/time?”, “What
is the level of humidity and rainfall on a specific timestamp?” by rapidly traversing the graph while
reading and processing values in nodes, relations and properties. Similarly, it handles other
questions related to the historical data of users regarding past route recommendations and
environmental conditions. Questions about environmental conditions are effectively handled, by
traversing the graph as shown in Figure 24, where the ratings of users are depicted.

FIGURE 24: GRAPH DATABASE MODELING USING TIME TREES AND HANDLING BIG VOLUMES OF OPEN
DATA COMING FROM THE CITY

Graph database Modelling - Overall modelling approach

A significant advantage of graph models is that they depict entities and relations in the same way
as we think of them. Moreover, these models are forming a view on the queries we would like to
implement in the graph database. The modelling process and approach in graph databases can be
regarded as equivalent to the approach of creating graph structures that reflect the queries we
would like to answer. “Users” or “Ratings” for example comprise the nodes of the graph, “names”
are the attributes of the nodes, verbs such as “likes” depict the relations that link the nodes, and
whatever refers to such verbs is regarded as the attributes of the relations. An interesting way to
model time in Neo4j is through the use of time trees. In this approach, nodes represent years,
months, and days, etc. while every node contains an attribute “value”.

By forming the time trees, we can link particular events or other measured data on these trees. In
our example, we link measurements of weather conditions (comprising of temperature, wind
speed, rainfall and humidity).

The data have been fed into our graph database and linked together in an efficient and
constructive way allowing the user to ask a multitude of questions such as: “what is the
temperature”, “what are the weather conditions”, etc. At the same time users have been added in
the database along with their preferences.

We begin the implementation of our system using Neo4j’s query language Cypher, a declarative,
SQL-inspired language for describing patterns in graphs visually. It allows us to state what we
want to select matching a specific pattern, insert, update or delete data from our graph without

37

requiring us to describe exactly how to do it24,25. Firstly, we create the time trees, which constitute
the keystone of our model. In order to achieve faster data retrieval and improved performance,
we use indexes, a feature provided by Cypher, created once over a property for all nodes that have
a label. Cypher automatically manages the update by the database whenever the graph is changed.
Then, we populate our model by importing the temperature and weather data into the graph
database linked to the suitable time nodes, adding additional integration layers when required
e.g. an additional layer is required for wind level and speed. We should note that Neo4j offers great
data visualisation options allowing us to view all the stored nodes, relations and information,
giving real-time insights into how data nodes are related, facilitating the development and
evaluation process.

The system provides a user-friendly way for users’ registration in order to deliver path
recommendation services. When a user is registered to the system, a new unique node is created
with the user characteristics stored as properties. Afterwards, the user inserts preferences and
historical data, and the corresponding nodes and relations are created in the graph database.

Recommendations

Our proposed recommendation service exploits similarity metrics among vector representations,
users’ preferences, graph analysis algorithms to deliver in real-time recommendations in the form
of path recommendation.

The user receives the top path recommendations and chooses one to follow. For example, a
resident of Bristol wishes to receive a path recommendation to move from his house to a point of
interest. Our service provides the most suitable schedules after tracking the closest users,
historical data, the number these schedules were applied and past evaluations. The user chooses
the best one and afterwards optionally provides feedback in the form of a rating or suggestion for
alteration if required.

Recommendation systems produce suggestions through various approaches, while they often
take into consideration the dynamic context to establish relations among users and target objects.
The production of effective recommendations is based on the comprehension of these relations
and their quality as well. Graphs are perhaps the most suitable structure to represent dense
connected data structures. By storing and studying these data using graph databases, an
application is allowed to exploit and demonstrate in real-time the impact of users’ actions and not
just take advantage of predefined results of pre-existing data. A widely applied technique in
collaborative filtering recommendation systems is identifying the closeness among different users
with similarity metrics.

By executing queries in the graph database, path recommendations to reach the desired
destination are returned:

i) the shortest path,
ii) the “green” path i.e. a path through the areas which have the lowest air pollution etc.
iii) a combination of the previously two mentioned approaches

The recommendation service exploits these data and delivers the top schedules for the particular
destination.

24 https://neo4j.com/developer/cypher-query-language/
25 I. Robinson, J. Webber, and E. Eifrem. Graph databases: new opportunities for connected data. "O'Reilly
Media, Inc.", 2015.

https://neo4j.com/developer/cypher-query-language/

38

3.4.3 Interfaces and Integration

The Recommendation Service exposes a RESTful API, which allows the integration with other
tools and services. The API manages the users’ requests for recommendations and the connection
with data sources, and handles user generated data. More specifically, through the API, some of
the actions handled are:

 A user requests a recommendation.

 A user provides feedback after applying a received recommendation.

 A new user is registered.

 The information about a user is updated or deleted.

 Sensors to the data source flows are connected.

 Open data (for example, regarding weather conditions) are added/updated.

 Historical data (for example, regarding weather) conditions are received.

 Users requests to retrieve all recommendations they have received and the corresponding
feedback they have provided.

3.4.4 Performance, Evaluation and Stress-tests

It is important for a recommendation service to maintain a reasonable response time and
particularly the suggestion calculation to have a limited running time. It is very important, for
large scale IoT deployments, especially in the context of smart city, to allow for an increased level
of user experience. We have extensively tested the efficiency of our system for increasing number
of users, data and complex queries and it returns high speed results. Exploiting the features of
graph databases, it achieves for the big majority of queries responses in less than 100 msec. In
order to achieve real-time operation features in a highly demanding smart city application
domain, the suggested solution has been deployed in a high availability cluster environment, as
the performance measurements have to be taken in realistic conditions, especially as the dynamic
recommendation service, depending on time constraints, has to offer a user friendly experience
to the user in terms of high availability and performance issue.

In order to achieve this, the Neo4j enterprise edition 3.2.3 has been selected because it allows the
clustering approach. In the Neo4j High Availability (HA) architecture, the cluster is typically
fronted by a load balancer HAProxy26. HAProxy has to be configured with two open ports, one for
routing write operations to the master and one for load balancing read operations over slaves.
Each application will have two driver instances, one connected to the master port for performing
writes and one connected to the slave port for performing reads. The implemented cluster
comprised of one server node acting as master node and 5 slave virtual machine nodes.

The goal of our distributed implementation is to provide high throughput. Each node processes a
subset of the overall queries, ensuring scalability and performance in high-demand situations,
reducing latency and providing continuous availability, even after a failure occurs to a machine.
The proposed approach has been evaluated on the basis of read queries as to be able to determine
the validity in demanding smart city applications with thousands of concurrent users requesting
information. As depicted in Figure 25, the relationship between the response time of a single
server implementation and the number of users/requests is almost linear.

26 www.haproxy.org

http://www.haproxy.org/

39

FIGURE 25: EXAMPLE OF 100 TO1000 REQUESTS – RESPONSE TIME ON A SINGLE SERVER

In order to test the scalability of our system, we examined its response time for an increasing
number of requests from 100 to 1000. The process time is significantly reduced as the requests
are allocated to more servers. In the following indicative figure, the total process time of 1000
requests is reduced from 12.02 seconds to 2.18 seconds after increasing the size of our cluster
(Figure 26).

FIGURE 26: EXAMPLE OF 1000 REQUESTS – RESPONSE TIME ON UP TO 6 SERVERS-CLUSTER
IMPLEMENTATION ON A HIGH AVALAIBILITY NEO4J CLUSTER

We have extensively evaluated the performance of our Recommendation Service based on High
Availability Neo4j cluster in different settings. In the following representative diagram, we can see
the reduction of total response time as we add more nodes (Figure 27).

40

FIGURE 27: EXAMPLE OF 100 TO 1000 REQUESTS – RESPONSE TIME ON VARIETY OF CLUSTER NODE
IMPLEMENTATIONS ON HIGH AVAILABILITY NEO4J CLUSTER IMPLEMENTATION

The overall improved performance of the High Availability Neo4j cluster compared to the
performance of the single node Neo4j was improved in all cases. Even for experiments with a small
number of requests (e.g. 300), the total response time was halved after adding one more node to
the cluster (Figure 28).

FIGURE 28: EXAMPLE OF 300 TO 1000 REQUESTS – RESPONSE TIME ON UP TO 6 SERVERS – CLUSTER
IMPLEMENTATIONS ON HIGH AVAILABILITY NEO4J CLUSTER

As demonstrated previously, adding more nodes to the cluster improves the performance and
reduces the overall response time. However, the reduction percentage is reduced, while we add
more nodes. For example, in the case of 400 queries, the transition from single server to a two-
nodes High Availability (HA) cluster reduces the overall required time by 49.8%, whereas the
transition from a cluster with five nodes to six reduces the required time by 5.1% (Figure 29).

41

FIGURE 29: TIME REDUCTION PERCENTAGE ON A CONFIGURATION OF 400 TO 1000 REQUESTS ON UP
TO 6 SERVERS - CLUSTER IMPLEMENTATIONS ON HIGH AVAILABILITY NEO4J CLUSTER

FIGURE 30: HAPROXY DISTRIBUTES REQUESTS ACROSS MULTIPLE NEO4J SERVERS, OPTIMISING
RESOURCE USE, MAXIMISING THROUGHPUT, MINIMISING RESPONSE TIME AND AVOIDING OVERLOAD

42

FIGURE 31: UPDATED ARCHITECTURE OVERVIEW INCLUDING HAPROXY AND DISTRIBUTED DATABASE

43

4 Integration Points & Use-Cases support

4.1 Fujisawa Trial 2: Fine-grained city infrastructure management

This use-case has been extensively described in the corresponding subsections where the
DeepOnEdge as well as GAnonymizer have been presented. However, going beyond this
implementation, services of even higher-level are offered in this scenario by using other
components of WP3 (namely KNOWAGE and Recommendation Service).

DeepOnEdge outputs are provided to KNOWAGE as daily CSV files and are stored into the
BigClouT Data Lake (WP2) as open data. The analytical process (performed by taking advantage
of KNOWAGE’s functionalities) consists of the:

1. Aggregation of the punctual measure by their geographical localisation, taking into
account three types of features:

o Fujisawa’s Districts;
o Fujisawa’s Road;
o Grid mesh

2. Classification of the aggregated measures by their level of damage (High, Medium and
Low) using two different approaches:

o The average damage value of the measurements that falls into a category
o The majority of measurements that falls into a category

The high priority sorted output of the aggregation and classification processes is provided
through JSON or CSV files to Fujisawa Municipality and the Recommendation Service in order to,
respectively, schedule the proper maintenance services and to build a prediction model by linking
these data to Fujisawa traffic and weather information. Moreover, these analysis results are used
to build an interactive dashboard, depicted in Figure 17, which will be used by Fujisawa
municipality officers to visually understand the city road damage status. Thanks to its RESTful
API, recommendation produced by the Recommendation Service will be used in KNOWAGE as
input for visualisation.

At the time this document is written, ENG and ICCS are working on giving the chance to manage
the granularity of the features used to aggregate the punctual measures in order to find the
optimal dimension for the prediction operation described above. In order to clarify this point, it is
important to underline that the Fujisawa’s Road and the Grid mesh used to aggregate features
have currently a predefined dimension. Managing the granularity of these features will give
deeper detail to Fujisawa municipality officers allowing to schedule more specific control and
management to Fujisawa’s road and, also, it will help the prediction operations providing larger
dataset to work on. For instance, with this approach the user will have to decide dynamically the
dimension of the grid mesh or of the road segments that will be used in the analysis.

44

4.2 Bristol Trial 1: Smart Mobility - Walkability and Air Quality trial

The integration between KNOWAGE and the Recommendation Service is used to provide to
citizens of Bristol and Tsukuba insights about mobility in the city. This integration in both use
cases is performed taking advantage of the RESTful APIs provided by the assets.

For the Bristol use case, the expected output is the correlation of air quality and traffic data to
suggest the greenest path to pedestrians moving around the city. Air pollution is measured on 6
location of the city and the traffic and weather data is provided by Bristol City Council.

The details of this scenario are extensively presented in subsection 3.4.

These data are used by the Recommendation Service to provide recommendations about the
greenest path the user should follow. These recommendations will be provided to citizens
exploiting KNOWAGE’s visualisation functionalities. Indeed, through a dynamic dashboard the
recommended path will be visualised in a map together with a table and charts with details about
the punctual measures provided thanks to the deployed sensors.

FIGURE 32: SMART MOBILITY USE CASE

45

4.3 Grenoble Trial 1: Business Events /
Tsukuba Trial 1: Provide information in real time to visitors

This section describes the integration between KNOWAGE and Recommendation Service to
provide visitor in Tsukuba and Grenoble with information. The data source of both the use cases
is a mobile application which is used by visitors to:

 send notifications about problems experienced in Tsukuba City in terms of text and photo
along with the user location, using a mobile application called HukuRepo.

 suggest events, restaurants or food trucks to visitors in (near) on the basis of the user
location and registered preferences.

In the Grenoble use case, the recommendation about restaurants and events in the city will be
produced by the Recommendation Service and provided to visitors in a friendly map that will be
embedded in the mobile application. The map will be built exploiting KNOWAGE visualisation
functionalities. The communication between the two assets will be accomplished taking
advantage of the RESTful APIs provided by the two assets. Moreover, KNOWAGE will use the data
collected by the mobile application to analyse the impact and information about the usage of the
mobile application and the results of this analysis will be visualised in a dynamic dashboard.

For the Tsukuba use case, the expected outcome is the provision of concierge services for foreign
visitors in Tsukuba city. The data will be provided to BigClouT platform thanks to a dedicated
mobile application that will be in charge to gather from visitors their location and a timestamp
together with the details of the specific user. These data will be used by the Recommendation
Service to create specific recommendations for the user to suggest, for instance, a restaurant near
their position. StreamingCube will be used in this use case to make spatial analysis of visitors.
Moreover, KNOWAGE will be used to perform historical analysis over the collected data in order
to give feedbacks to Tsukuba City officers about the activities of visitors.

The conceptual view of these use cases is similar to this presented in Figure 32.

46

5 Conclusions

This deliverable presents in great depth the Big Data Analytics Framework of BigClouT project
and its architecture. Due to the detailed and structured presentation of the several elementary
services and functionalities the WP3 modules and components provide, this report has been used
as a reference document and a roadmap for all actions regarding the corresponding integration
and (integrated) demonstrations.

The input provided by all WP3 partners in all previous deliverables of the WP has been used to
define and finalise the implementation, integration and demonstration plan of the Big Data
Analytics Framework that is responsible to provide these new functionalities in BigClouT.

Information provided in this document, and in general results produced by WP3, in terms of use
cases, sequence diagrams and technical details about integration of the different assets composing
the City Data Processing will be taken as input by the final activities of the project in order to
continue the work towards the final results of BigClouT.

