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DOCUMENT	ABSTRACT	
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1. Introduction	

 

Transformers are state-of-the-art solutions in many Artificial Intelligence (AI) scenarios, including that of 
Speech Translation (ST) and Automatic Speech Recognition (ASR), targeted by the Fvllmonti project. 
However, the massive size and the large number of parameters of typical transformer implementations pose 
a computational challenge. Transformer architectures are composed by several layers, each embedding 
many large matrices of parameters. A typical transformer such as BERT-large [2] usually requires hundreds 
of millions of parameters. Such characteristics call for the hardware acceleration of inference in transformer 
models, in order to reduce their run-time and/or enable their execution in resource-constrained devices.  

Hardware accelerators for transformers usually target GEneral Matrix to Matrix multiplication (GEMM), 
which dominates the run time of this class of applications, as shown in Section 4. In this context, Systolic 
Array (SA) architectures [20] are the focus of renewed research interest [4]. SAs enable parallel execution of 
GEMMs on a 2-dimensional mesh of processing elements, computing outputs in linear time. In the context 
of Fvllmonti, they are particularly attractive solutions, as their spatial parallelism can be well captured by the 
Neural Network Compute Cube (N2C2) architecture being designed in WP4, while their high computational 
intensity makes ideal test vehicles for disruptive technologies such as the Vertical Nanowire Field Effect 
Transistors (VNWFET) object of the research endeavors in WPs 1-3. 

We herein describe our strategy to integrate N2C2-based accelerators in computing systems, and the full-
system simulator environment developed for this purpose. Our approach is based on tight coupling of 
accelerators as extensions to the processor pipelines. Run-time execution is then governed by custom 
instructions, enriching the Instruction Set Architecture (ISA) of systems. Such stance has two main 
advantages. First, because accelerators are integrated into CPUs, they are frugal from a resource perspective, 
as they do not require dedicated scratchpads to store input, outputs or intermediate data. Second, they do 
not incur significant overheads for data transfers to/from the accelerators. On the contrary, tightly-coupled 
N2C2s can potentially leverage data-reuse optimization strategies performed at the system level, such as 
multi-tier tiling across the cache hierarchy. Finally, tight-coupling do not disrupt locality when transitioning 
from accelerated to non-accelerated computation segments. 

To enable the quantitative assessment of these benefits, we implemented a parametric module emulating 
tightly-coupled N2C2 cells in the gem5-X full system simulation environment [17]. Preliminary results indicate 
run-time speedups exceeding 80X when executing BERT-Large Transformer model. 
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2. Background	

 
I. TRANSFORMERS 

Transformers are deep learning models composed of multiple blocks, where the outputs of each block are 
produced based on the inputs, weighted according to an “attention” significance metric. Attention values 
state the relevance of each input elements. 

Early attention-based models derived attentions from an auxiliary channel. A major breakthrough in 
transformer performance was the introduction of “self-attention” by Vaswani et al. [19], which showcased 
that attention values can be effectively derived from the input data itself. 

BERT [2] is a prototypical transformer model based on the self-attention concept and dedicated to language 
processing. The network consists of three different parts. First, an embedding layer translates a sequence of 
input tokens (e.g., words or syllables) into numerical values. Then, the main transformer functionality is 
implemented. This is composed of encoder transformer blocks. Depending on the BERT version, different 
numbers of blocks of identical size are employed.  Finally, outputs are derived by an application-specific linear 
layer. For instance, for text classification, a simple representation reduction is applied. A similar structure is 
implemented in other transformer implementations, such as VisionTransformer (ViT) models [3], which 
target image interpretation tasks. In particular, both BERT and ViT employ multi-head attention (MHA) in 
encoder blocks to increase robustness. 

 

 

 
Figure 1 : Left: A representation of a transformer block. Right: A single head from the multi-head attention 

layer. Asterisks (*) denote layers whose execution is dominated by matrix-matrix multiplication. 

 

Encoders dominate the workload of transformer-based models. The optimization of encoder blocks is, 
therefore, key from an application-wide perspective. Figure 1-left illustrates the encoder block structure. 
Their first component is devoted to the computation of MHA values. It applies the input matrix 𝑋	 ∈
ℝ!!"#×!$%&"'  to ℎ number of heads, where 𝑑#$%	denotes the input sequence length, and 𝑑'(!$)	 denotes the 
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vector length for each input in the sequence. The heads have identical dimensions, but because they employ 
different weights, they produce different values from the same input. Then, in the subsequent “Projection” 
layer, MHA outputs are concatenated and transformed to a lower dimension using a further rectangular 
weight matrix. The output of this layer has the dimensions of the encoder block input, so that both can be 
fed to the subsequent “Add & Norm” layer. As the name implies, in this stage the inputs of an encoder block 
are added to the Projection outputs, and the resulting values are normalized to have zero mean and unit 
variance. The final stages of the transformer block employ two position-wise Feed-Forward (FF) 
transformations to increase the dimension to 𝑑**	 and decrease it again to 𝑑'(!$)	. The FFs are followed by 
a further “Add & Norm” operation. 

Figure 1-right shows the details of the computation of one head (𝑖 ∈ {0, . . , ℎ − 1}) in an MHA layer. In it, the 
input 𝑋 is multiplied with three weights matrices 𝑊+

, , 𝑊+
-  , 𝑊+

.  to obtain 𝑄+  , 𝐾+  , 𝑉+  (named the Query, Key 
and Value matrices, respectively). The output of this single-head attention layer is then computed as follows: 

𝐻+ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 =
𝑄+	 × 𝐾+/

?𝑑%
@ × 𝑉+ 	, 𝑖 ∈ {0, . . , ℎ − 1}	 

In the equation above, 𝑑%	 is the dimension of the query, key, and value matrices. Then, the softmax layer 
scales matrix values in the range [0, 1]. 𝐻+  is the output of 𝑖-th head, which is the input (along with the output 
of all other attention heads) of the projection layer. 

 
Stage MHA Projection Add Norm 1 FF1 FF2 Add Norm 2 
run-time 
(sec) 69.769738 32.482152 0.020244 429.476127 304.602903 0.020434 

 

Table 1 : Run-time of the different stages of a BERT transformer block. Data gathered when executing on 
a 1GHz ARM CPU, with 32KB L1 data and instruction caches, and 1MB unified L2 cache. 

As shown in Table 1, the dominant stages in transformer blocks (from a run-time perspective) implement 
GEMM operations: MHA, Projection and FF. In contrast, the non-GEMM Add-Norm stage only marginally 
contribute to run-time. In turn, GEMM-based layers can be effectively sped-up by the dedicated N2C2 cells, 
whose functionality and integration is detailed in the following. 

 
II. SYSTOLIC ARRAYS 

SAs are composed of sparsely-interconnected Processing Elements (PEs) which process an input stream to 
produce an output stream. Each PE embeds arithmetic units and storage [11]. Crucially, 2-dimensional SA 
grids can be specialized to spatially distribute the computation of GEMM algorithms [6]. 

SA designs for GEMM can stream the two input operands and have an output value being computed on each 
cell (output-stationary SA). Alternatively, one input may be stationary, while the other and the computed 
output values are streamed to/from the array (weight-stationary SA [1]). We focus on the latter choice, as it 
guarantees a better degree of data reuse for transformer applications when weights are considered as 
stationary inputs. In turn, a high degree of data reuse is key to coping with bandwidth constraints in tightly-
coupled accelerators, as we discuss in detail in Section III. 
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Figure 2 : Left: architecture of a 3x3 weight-stationary systolic array.  

Right: detailed view of the PE structure. 

 

Figure 2 illustrates the structure of a 3x3 weight-stationary SA architecture. Input and outputs propagate in 
the array along two orthogonal directions (in the example, inputs stream left-to-right, outputs top-to-
bottom). Weights are initialized before the start of computation and are resident in PEs. Then at every clock 
cycle, inputs are moved from one PE to the next unmodified, while outputs accumulate the results of the 
multiplication of inputs and weights. To produce a correct result, both inputs and outputs must be skewed 
along a diagonal. In our implementation, such skewing is performed with First-In First-Out (FIFO) queues of 
appropriate sizes that act as delay elements. 

 

3. N2C2	as	a	tightly	coupled	Systolic	Array	

In this section, we describe how SAs can be effectively integrated into computing platforms as tightly-coupled 
accelerators, how their capabilities are exposed to software through ISA extensions, and how applications 
can effectively map matrix multiplications on available N2C2 resources. 

 
I. N2C2 INTEGRATION 

An example system featuring a N2C2 accelerator as a specialized Functional Unit (FU) is presented in Figure 
3-left. From a resource requirements perspective, such an approach has the advantage that the SA, similarly 
to other FUs (e.g., devoted to integer, floating-point, or load/store operations), is interfaced to the cache 
hierarchy of the processor. Hence, there is no need for large dedicated scratchpads to host inputs and 
outputs. As discussed below, only shallow FIFOs are required to implement the proper data alignment. 

A processor pipeline featuring N2C2 acceleration is depicted in Figure3-right. The N2C2 is accessed by 
employing dedicated instructions. Similar to instructions defining integer, floating-point, load/store, and 
other operations, custom instructions governing the SA are first fetched and then decoded. In the issue stage, 
the instruction operands are identified. Then, the N2C2-specific instructions are executed, directing 
operations on the systolic array. Finally, results are written back in the last stage of the pipeline. 

Input Reg
Weight Reg

Processing Element

Accumulator
Input
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Figure 3 : Left: architecture of systems integrating a tightly-coupled N2C2 accelerator (indicated as a 

Systolic Array, SA). Right: SA as a custom functional unit embedded in a CPU pipeline. 

 
II. N2C2 CUSTOM INSTRUCTIONS 

In the developed implementation, N2C2 dedicated operations extend the ARMv8 ISA. They are composed of 
an operation code (opcode) field and data/address operands. Operands are assumed to be 32 bits.  

Such bitwidth, while common in computing systems, is not required to represent data (both weights and 
intermediate values) in transformer models. Indeed, it is shown in the literature [7, 10, 13, 23] that 8-bit 
quantized transformer models incur a negligible accuracy drop. Therefore, to optimize run-time 
performance, we allow the transfer of four 8-bit data elements as different bit-fields of the same 32-bit 
register. Then, N2C2s with different multiple-of-four size (4*4, 8*8, etc.) can be parametrically defined. In 
the common case in which the N2C2 size exceeds 4*4, multiple instructions are required to complete the 
transfer of a matrix row. We hence use two different instructions to a) transfer four data items to/from the 
accelerator and b) transfer four data items to/from the accelerator and activate the MAC computations on 
the array. Figure 4 shows the behavior of these two instructions. 

 

  
 

Figure 4 : Left: The SA_IO instruction enqueues four 8-bit values at the N2C2 input, and reads back four 8-
bit values at its output. Right: In addition to performing I/O, SA_IOC also activates the FIFOs at the 

periphery of the SA and the PEs performing the computation of MACs in the array.               
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In more details, the custom instructions are defined as follows: 

• SA_LD. This instruction loads the weight inside PEs. It has three operands: two operands identify a 
PE cell by row and column address. The third operand is the weight value that should be stored in 
the PE. SA_LD transfers four weights at each invocation: that of the cell at the indicated row and 
column, and the three cells after it on the same row. 

• SA_IOC. This instruction is for Input, Output, and Computation (IOC) in the systolic array. It has two 
32-bit operands. The first one dictates the input data, expressed as four concatenated 8-bit values. 
The second operand indicates in which position of the input row the values should be stored.  When 
SA_IOC executes, the PEs inside the N2C2 array perform the computation of MAC operations in all 
columns, and inputs are propagated in all rows. Outputs are then produced at the bottom of the 
N2C2. The four 8-bit values corresponding to the position indicated as the second operand are 
forwarded to the writeback stage of the processor pipeline. 

• SA_IO. In contrast to the SA_IOC, in SA_IO, the N2C2 does not perform the computation because a 
row of inputs has not fully loaded. Similarly to SA_IOC, the instruction has two operands, determining 
the input data and the data position.  In the same cycle, a 32-bit of output is read, again determined 
by the second instruction operand. 

Note that in an N2C2 with 4*4 PEs, only the SA_LD and SA_IOC instructions are required. To this end, four 
SA_LD are used to program the weight values of the 16 registers, and then, the input data is streamed to the 
N2C2 using SA_IOC (at position ‘0’). The values read back by this operation correspond to four concatenated 
8-bit N2C2 outputs. 

In order to guarantee correctness, the input of weight stationary SAs must be skewed row-wise (see Figure 
2). The proper input matrix shape could be arranged in software, i.e., by explicitly inserting ‘0’ values in the 
upper-left region of the input matrix. This solution would unnecessarily increase memory requirements.  

In our N2C2 model, as shown in Figure 4, we instead address this issue by employing row-wise FIFOs of 
increasing size at the SA periphery. Further column-wise FIFOs of appropriate size are used to enforce the 
correct alignment of output data. Data in FIFOs is advanced in response to an SA_IOC instruction.   

 
III. SYSTEM SIMULATION 

N2C2 instances are realized as gem5-X modules, allowing the evaluation of their benefits when accelerating 
transformer applications from a full-system perspective [17]. gem5-X is based on the popular gem5 
framework [14], adding enhancements to support architectural extensions and advanced features such as 
guest/host shared spaced and fine-grained check-pointing. 

We targeted systems based on the ARMv8 ISA, using gem5-X to extend the instruction set using unallocated 
opcodes, which we assigned to the N2C2 custom instructions. The behavioral model of accelerators, including 
the functionality of each defined instruction, is modeled in C++. 

Applications can access N2C2s by inserting in-line assembly calls in their code. Three such code snippets are 
exemplified in Table 1.  In the first column, two values are loaded in registers with a PE row and column index. 
Then, a third register is programmed with a weight value. Finally, the weight is transferred to the indexed PE 
using SA_LD. The second and third columns illustrate the use of SA_IO and SA_IOC, respectively. In both 
cases, data and position registers are set, the custom instruction is called, and the result is stored in memory. 
For convenience, in our implementation assembly code such as the one in Table 2 is encapsulated in a library 
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of higher-level functions performing the programming of weights and the streaming of data to/from the 
systolic array. 

 
 

Load Weight Input, Output Input, Output, Compute 

1.   MOV R1, col 
2.   MOV R2, row 
3.   LW R3, $(w_addr) 
4.   SA_LD R1, R2, R3 

1.   MOV R1, col 
2.   LW R3, $(w_addr) 
3.   SA_IO R1, R3, R4 
4.   SW R4, $(out_addr)  

1.   MOV R1, col 
2.   LW R3, $(w_addr) 
3.   SA_IO R1, R3, R4 
4.   SW R4, $(out_addr)  

 

Table 2 : Use of ISA extensions for governing N2C2 instances at run-time. 

4. Preliminary	results	

 

As a first assessment of the benefit of employing the developed accelerator, we considered as a test vehicle 
a system with a single in-order core, defined in gem5-X. The system features 32 KB L1 instruction and data 
caches and a 1MB L2 cache. It also integrates an N2C2 accelerator with a size of 16*16 PEs. Performance was 
compared with that of an identical system, but without N2C2 acceleration. 

We targeted as a benchmark a transformer block of the BERT-Large model, executing under Ubuntu Linux 
16.04. The application characteristics are listed in the table below, where the listed parameter follow the 
definition provided in Section 2. 
 

dseq dmodel dff dq h # weights 
512 1024 4096 64 16 340 * 106 

 

Table 3 : BERT-Large model parameters and number of weights. 

As shown Figure 5, the use of an N2C2 of a moderate 16*16 size resulted in a very relevant speedup of 89.5X. 
Such encouraging result originate from multiple benefits deriving from the use of tightly-coupled systolic 
accelerators: 

1. The presence of parallel hardware resources allows to speed-up computation, enabling the 
computation of a 16*16 tile of a GEMM in constant time.  

2. The N2C2 internal register cache the weight values of a tile, reducing the pressure on the cache 
hierarchy.  

3. The regular N2C2 structure results in tiled computation patterns, which leads to an increase in data 
reuse.  

Ongoing research efforts are elaborating on these finding, in order to provide a detailed analysis of the 
contribution of the different factors outlined above, as well as to investigate a vast collection of benchmarks 
and target architectures. 
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Figure 5 : Speed-up of the BERT-large encoder block executing with and without N2C2 acceleration. 

 

The pie charts below report the breakdowns of the run-time along the different phases of the investigated 
transformer blocks. The right graph refers to the baseline system, while the right one to the accelerated one 
(again, considering a 16*16 N2C2). Crucially, it shows that, even for accelerated cases, GEMM is still the most 
intensive computational kernel, hinting at the scalability of our approach to even more performant 
accelerator, having a larger number of PEs, which we are investigating in collaboration with WP4. 

 

 

 
Figure 6 : Proportion of non-GEMM operations in a BERT-large block executing (a) as a non-optimized 

implementation and (b) accelerated by a 16*16 N2C2. 
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5. Related	Works	

 

The developed N2C2 system model is instrumental for evaluating the benefits of the technological advances 
sought in WP1-4 and the novel application optimization strategies in T5.3. Indeed, it serves as a necessary 
bridge between tasks performed at the technology and application levels within the Fvllmonti project. 

In addition, the system-level simulation framework introduced in this deliverable D5.3 is an important 
research outcome in its own right, because the performed approach combining tight coupling and systolic 
acceleration, tailored to the acceleration of Transformer, tangibly innovates on the state of the art. 

Indeed, few works explore systolic arrays for transformers. One of the earliest works on this topic is [15]. The 
paper implements a large SA accelerator using a hardware description language (HDL) and evaluates it on a 
Xilinx FPGA, considering a single transformer model. In [12], again, a systolic accelerator is implemented at 
the HDL level. However, these two works do not consider the integration of accelerators in computing 
systems. 

Similarly to us, the work [18] proposes a systolic array accelerator simulated in a cycle-accurate platform for 
deep learning models, including transformers. However, the architecture in this work is designed in a loosely-
coupled interface which hinders the accelerator from efficiently utilizing the cache hierarchy to maximize 
data reuse. 

Our approach is related to the works in [4], which proposes the dual-core Gemmini platform: a loosely-
coupled accelerator for deep learning models based on SAs. More than half of the area of Gemmini is 
dedicated to the scratchpads managing local data, and further resources are dedicated to the orchestration 
of data movements between memory and accelerator. Our tightly-coupled approach waives the need for 
these hardware elements, potentially resulting in highly energy- and area-efficient implementations. 

Another loosely coupled accelerator for transformers is described in [21], which also introduces a 
hardware/software codesign to leverage acceleration opportunities. First, an algorithm is proposed to 
dynamically identify the most critical weights in the first layer of a transformer. Then, a hardware weight 
filtering unit is employed to recognize these weights at run-time. As in [4], a vast part of the area of their 
accelerator (58.6%) is employed to buffer input-output data, an overhead that we entirely avoid in our 
approach. 
 
The authors of [9] employ Analog In-Memory Computing (AIMC) crossbars based on resistive memories to 
speed-up transformers. Their solution employs a multiplicity of crossbars interfaced to content addressable 
memories. A tightly-coupled solution for AIMC integration is introduced in ALPINE [8]. The authors of this 
paper focus on different applications with respect to us: multi-layer perceptrons, recurrent neural networks, 
and convolutional neural networks, where matrix-vector multiplications (as opposed to the GEMMs) are the 
main computational bottleneck. 

Recently, a tightly-coupled accelerator for deep learning models, including transformers, has been 
introduced by [20], relying on custom extensions to the RISC-V instruction set. As opposed to ours, their 
approach is based on vector operations on SIMD units (instead of systolic arrays), which require explicit 
masking and moving operations among vector registers. The authors do not report achieved speed-ups on 
transformer benchmarks. 
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6. Conclusions	and	Future	works	

 

This deliverable presented the system architecture work carried out in the first phase of the project. In 
particular, it illustrates the developed transformer accelerator, motivating the rationale for its design and 
detailing its structure as well as the approach undertaken for its integration in overall computing systems. 

Preliminary results highlight the potential benefit in accelerating the execution of transformers, while 
requiring a paucity of resources. We plan to confirm such preliminary results by exploring performance trends 
while varying the size of the systolic array, the capabilities of the overall system (operating frequencies, cache 
sizes, etc...) and the requirement of applications. In this regard, our exploration is following two 
complementary axes. On one side, we plan to investigate performance on entire transformer benchmark 
suites, to complement the results on BERT-Large presented in this deliverable. On the other, we will assess 
the effect of algorithmic optimizations presented in D5.5 in N2C2-accelerated systems. 

Moreover, we plan to parametrize the N2C2 gem5-X module from an area, timing and area perspective, 
following up on the activities in WP1-4. Hence, our aim is to provide a hardware-proven realistic model based 
on the characterization of VNWFET gates (WP3), and their synthesis in the N2C2 HDL description (WP4). Our 
preliminary investigation resulted in a conference paper [22], accepted as a full research manuscript at the 
Asia and South Pacific Design Automation Conference 2023 (ASP-DAC23), where it will be presented in 
January 2023. 
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