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1. Target Functionality 

The Neural Network Compute Cube (N2C2) is a central concept to the FVLLMONTI project. It represents a 
flexible computing hardware block for transformer-based neural networks. As illustrated in Figure 1, it will 
be implemented based on a dedicated library of 3D logic cells leveraging VNWFET devices developed in T4.1 
(Logic cell design, optimization and validation) and using technological hardware and data developed in WP1, 
WP2 and WP3. It also connects through a reconfigurable 3D interconnect framework developed in T4.2 
(Inter-cube interconnect framework) to implement a scalable and versatile 3D architectural model in 
connection with WP5. Its fundamental properties of physical regularity, functional versatility and in-memory 
vector processing will make it suitable to explore hardware/software co-design techniques in the context of 
transformer-based neural networks for machine translation applications as well as quantization-based 
approximate computing to reduce resource usage and energy consumption as well as enable more complex 
network topologies. 

 
Figure 1 : Neural Network Compute Cube (N2C2) – the big picture 

The principal function of the N2C2 is to carry out element-wise non-volatile matrix multiplication, 
accumulation and activation through a non-linear function. It features multiple means of configuration: 

• Firstly, it is function-configurable. As a baseline operation, we define a 32-bit integer multiply-accumulate 
function (MAC) which can also be broken down into its individual operations (multiply, addition, 
accumulation and combinations of these). We also include resources to efficiently program an activation 
function (e.g. sigmoid, tanh, rectified linear – ReLU, softplus …) that can be switched in and out of the 
datapath. It is intended for the activation function to be implemented in memory elements in a coarse-
grain logic-in-memory approach. 

• It is connectivity-configurable, meaning that it is possible to input from 2-8 operands as number of inputs 
to each cell. Further, it is compatible with routing resources outside of the N2C2 (T4.2 – Intercube 
interconnect framework) in order to (for example) handle feedback in recursive networks, or to configure 
the vertical routing of data between layers in both directions. 

• It is coefficient-configurable, meaning that it is possible to program synaptic coefficients in memory 
elements and connect them to the multiplier function blocks. 

• It is datawidth-configurable, in that it is possible to implement both intra-N2C2 scaledown from 1*32 bits 
to 2*16 bits, 4*8 bits or 8*4 bits; and that it is also possible to handle inter-N2C2 scaleup to 64 bits, 128 
bits, 256 bits, 512 bits. 

The following sections will detail the architectural specifications and description of planned implementations 
of the N2C2 block. In section 2, we will describe the proposed architecture in terms of its schematic and target 
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behavior, as well as its intended use in matrix multiplication architectures. Section 3 will cover the intended 
implementations of the N2C2, including technological variants, target logic design styles and finally 
performance measurements which will be extracted from circuit-level schematics and injected into higher-
level architectural models to enable performance assessment of complete architectures. 

2. Proposed Architecture 

I. SCHEMATIC AND BEHAVIOR 

This section describes the schematic view of the N2C2 block as depicted in Figure 2.  

 

Figure 2 : N2C2 schematic view 

Table 1 summarizes the input/output signals, with the related direction, bit-width and type (data or control 
signal). 

Table 1: N2C2 I/O signals 

Signal Direction Width (bit) Type 

X 

input 
N 

data 

W 
A 

B 

Y output 

Cin input 1 

Cout output 1 

bw 

input 

2 

control 

mode0 1 

mode1 1 

mode2 1 

neuron 1 

 

Adder

multiplier

Acc reg

X nn

2n + p

2n+p

truncation

n

2n+p

2n +p

n

W

mode0

mode0

Y

bw

Act fun (LUT)

n

neuron

n

2n
mode1

<
<

 >
>

<< >>
2n2n

mode2

Cin

Cout

B

A

2n + p
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The N2C2 is a sophisticated Programmable Multiply and Accumulate unit. Table 2 reports the available 
arithmetic functions and the associated control signals values. 

Table 2: N2C2 arithmetic functions 

Output Control Signals Description 

Y = X * Y 
Acc = Y + A 

mode1= 1 
mode0= 1 
mode2= 0 

neuron = 0 

multiplication 

Y = X * Y + A 
Acc = Y 

mode1= 1 
mode0= 0 
mode2= 0 

neuron = 0 

multiplication addition 

Y = X * Y + Acc 
Acc = Acc + Y 

mode1= 1 
mode0= 1 
mode2= 1 

neuron = 0 

multiplication 
accumulation 

(MAC) 

Y = A + B 
Acc = Y 

mode1= 0 
mode0= 0 
mode2= 0 

neuron = 0 

addition 

Y = B + Acc 
Acc = Acc + Y 

mode1= 0 
mode0= 1 
mode2= 1 

neuron = 0 

accumulation 

Y = Act(R) neuron = 1 

neuron mode with 
activation function1. R can 
be the result of any of the 
above arithmetic functions 

 

The N2C2 supports different levels of accuracy, in terms of bit-width of data processing. This is particularly 
useful in energy/resource-critical applications where it can be useful to explore accuracy/resource usage 
tradeoffs. The baseline accuracy is chosen to be n=32 (i.e. the bit-width of all data signals is 32 bits). By using 
the ‘bw’ control signal, it is possible to reduce the accuracy (and hence reduce the resource usage and energy 
consumption; or enable more complex NN architectures) as depicted in Table 3. 

Table 3: N2C2 Precision Configuration 

Precision (bit) Guard bits  Control Signals Description Throughput 

n=32 p=8 bw="00" default precision 1x 

n=16 p=4 bw="01" half precision  2x 

n=8 p=2 bw="10" quarter precision  4x 

n=4 p=1 bw="11" octave precision 8x 

 

Precision down-scaling is not the only option. It is also possible to up-scale the precision (e.g. to have n=64) 
by using two or more N2C2. Figure 3 shows a simple example where two N2C2 blocks are connected together 
to obtain a 64-bit adder. In a similar way, it is possible to perform 64-bit (or even higher) multiplications. 

 
1 The activation function is stored in a Look up Table. The details about LUT implementation and its programming mode will be 
further detailed. 
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Figure 3 : N2C2 64-bit adder configuration 

The N2C2 has been implemented as a VHDL behavioral model in order to be able to carry out simulations to 
ensure the correct functionality and to obtain performances in terms of clock cycles. The full VHDL code is 
given in section 5 (appendix). 

 

Figure 4 : N2C2 example simulation multiplication mode 

Figure 4 depicts the waveforms obtained from the simulation of the VHDL model. The simulation 
demonstrates the multiplication mode with two different levels of accuracy: (i) default (32-bit) precision and 
(ii) octave (32/8, i.e. 4-bit) precision. The result is thus Y=X*W depending on the precision. The throughput 
also depends on the precision: one multiplication at default precision, 8 multiplications in parallel executed 
at octave precision. 

N2C2

X WBA

Y

CinCout

mode bw

N2C2

X WBA

Y

Cin = 0Cout

mode bw

High => [63:32] Low => [31:0] 

Mode Multiplication

Default Precision 
(32bit)

Octave Precision (4bit)

Clk

Rst

X

W

Y

BW

Mode2, Mode1, Mode0
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Figure 5 : N2C2 example simulation MAC mode 

Figure 5 shows another example simulation, in which the N2C2 is configured as MAC at default precision. The 
output Y=X*W+Acc is updated at each clock cycle (in the example, X=W=0Ah). 

II. INTENDED USE IN MATRIX MULTIPLICATION ARCHITECTURES 

The N2C2 block can be used to parallelize matrix multiplication operation and thus speed up the computation 
of the transformers level. This provides a simple example of how to use an N2C2 network for matrix 
multiplication using default precision. In Figure 6, we show operator-level computation of two elements c12 
and c33 as part of a 4x3 matrix c resulting from the multiplication of a 4x2 matrix a by a 2x3 matrix b. For the 
sake of simplicity, we will not cover the computation of the other elements of the c matrix, which can be 
found trivially from the given example. 

 

Figure 6 : Matrix multiplication example 

Figure 7 sketches the N2C2 network and its configuration (structural connection). The four blocks are devoted 
to computing the results c12 and c33. In the first cycle, each block is configured (see Table 2) to execute the 
multiplication between elements of a and b previously fetched from the memory and necessary for the 
computation.  

Mode MAC

Default Precision 
(32bit)

Clk
Rst

X
W

Y
Mode2, Mode1, Mode0

BW
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Figure 7 : N2C2 network first cycle 

Figure 8 shows the same network but during the second cycle. Here, blocks N2C2
2 and N2C2

4 are each 
configured to execute an addition operation, resulting in c12 (from N2C2

2) and c33 (from N2C2
4). 

 

Figure 8 : N2C2 network second cycle 

Figure 9 presents the simulation waveforms of the matrix multiplication presented above. Here we fix the 
following input values: 

• a11 = 2; a12 = 4; a31 = 5; a32 = 1  

• b12 = 3; b22 = 3; b13 = 4; b23 = 10; 

Consequently, the outputs are: 

• c12 = a11*b12 + a12*b22 = 2*3 + 4*3 = 6 + 12 = 18 (12h) 

• c33 = a31*b13 + a32*b23 = 5*4 + 1*10 = 20 + 10 = 30 (1Eh) 

In the first cycle, all N2C2 blocks are configured to multiplication mode in order to compute the intermediate 
values. In the second and final cycle, blocks 2 and 4 are configured to addition mode. The figure highlights 
the final results. 

N2C21

N2C23

N2C22

N2C24

a11

b12
b22

a12

b13 b23

a31 a32

N2C21

N2C23

N2C22

N2C24

c12

c33
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Figure 9 : N2C2 matrix multiplication example 

 

3. Implementation and performance metrics 

There are multiple technological variants and logic design styles that can implement the N2C2; and there are 
also multiple configurations (i.e. N2C2 network structures) that can execute the same operations. Each 
configuration is characterized by its latency (i.e. how many cycles are required to execute the operation), the 
area (i.e. how many N2C2 blocks are required) and finally the power/energy.  

I. TECHNOLOGICAL VARIANTS 

In this section we detail the various options to be explored in terms of technological implementation, which 
will then be evaluated at circuit-level to extract design data to be used in higher-level system simulations. 

The FVLLMONTI project will explore several avenues of research at the technological level.  

The baseline technology consists of the vertical nanowire field effect transistor (VNWFET) with a single gate 

(variant ). The design parameter at this level is essentially the number of nanowires per transistor, where 
the pitch between nanowires is a technological parameter that will be optimized according to tradeoffs 
between density (footprint), inter-nanowire capacitance, reliability and yield.  

Gate stacking is advantageous for logic density where multiple transistors in series are needed. This will be 

explored at the device hardware level with a 2-gate stack (variant ) as well as virtually (using TCAD 

simulations) with a 3-gate stack (variant ).  

Ambipolarity (electrostatic doping of the VNWFET channel) enables fine-grain logic reconfigurability but also 
requires a polarity gate to control the type of majority carriers in the channel. It therefore requires two gates 

on a single device. This can be achieved either with a 1-gate stack using a U-type configuration (variant ) or 

with a 2-gate stack, where one of the gates is the polarity gate (variant ). 

Cycle 1: All blocks are in 
Multiplication Mode Cycle 2: blocks 2 and 4 are 

in Addition Mode

C12

C33
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The integration of a ferroelectric layer in the transistor gate stack enables non-volatile behavior (memory or 
configuration) directly within the transistor. This will be explored at the device hardware level with a 1-gate 

stack (variant ) as well as virtually (using TCAD simulations) with a 2-gate stack (variant ). 

Finally, the mixing of these variants will also be explored virtually and used in the design of dense, fine-grain 

reconfigurable, non-volatile logic gates (variants  and fvllmonti). 

Table 4 summarizes the technological variants that will be used to build logic cell libraries in the context of 
implementation of N2C2. 

Table 4: Summary of technological variants 

Variant Gate stack Ambipolar Ferroelectric hardware 

 1 no no yes 

 2 no no yes 

 3 no no no 

 1 yes (U) no yes 

 2 yes no no 

 1 no yes yes 

 2 no yes no 

 1 yes (U) yes no 

fvllmonti 2 yes yes no 

 

II. LOGIC DESIGN STYLES 

Several design styles can be considered for implementation of logic functions. Each design style has its own 
merits and shortcomings, and thus a proper choice has to be made by designers in order to provide the 
correct functionality. This is true in all technologies, and is given a further degree of importance with the 3D 
VNWFET technology due to (a) the possibility of vertical stacking, (b) the possibility of reorienting the channel 
direction by 90°, (c) fine-grain reconfigurability and (d) non-volatile behavior. 

Candidate design styles considered of interest for the VNWFET technology are: 

• Static CMOS-like: this is the baseline design style using pull-up and pull-down switching networks to 
enable propagation of the voltage of one of the two power rails (gnd='0', Vdd='1') based on the state of 
the inputs, which can only access transistors via the gate terminals. 

• Pass Transistor Logic (PTL): this design style propagates data directly through transistor channels by 
allowing inputs to access the transistor either on the gate terminal or on one of the source/drain 
terminals. While this leads to more compact logic structures, the transistor channel resistance can lead 
to limited fanout and logic level degradation. However, as gate stacking is naturally suited to multiple 
transistors in series, the PTL approach presents an opportunity for exploration of such compact 
structures. 

• Non-volatile (NV) logic: non-volatile ferroelectric transistor devices enable the storage of an operand 
data value within the device itself, followed by the arrival of a second operand data value. This approach 
is particularly well adapted to applications where one operand varies rarely (e.g. NN weight coefficient) 
while the other varies often. 

• Ambipolar logic: electrostatic doping enables a single hardware device to achieve either n-type or p-type 
switching functionality, and therefore leads to attractive solutions for fine-grain reconfigurability, flexible 
hardware substrates and dense, regular architectures. The combination of ambipolarity and ferroelectric 
behavior also enables the non-volatile storage of a configuration value. A generic tile-based structure 
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presents opportunities for exploration. Particular points of concern will be leakage current and 
interconnect limitations. 

Examples of these four types of logic design style are given in Figure 10. 

 
 

(a) 
 

(b) 
 

 

 

(c) (d) 

 

Figure 10 : Examples of logic design styles to be explored in view of N2C2 implementation. Static CMOS design style – XOR gate 
(a). PTL design style – XOR gate (b). Non-volatile design style – dynamic XOR gate (c). Ambipolar design style – reconfigurable tile 

(d). 

III. PERFORMANCE METRICS 

Specifications for the design space (i.e. performance metrics to be extracted from N2C2 hardware 
measurements and/or simulations) are detailed in this section. The design spaces will be populated with data 
in the form of Pareto Fronts and originating from circuit-level simulations using technological variants 
described in the previous section in D4.05b. 
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Table 5: Summary of performance metrics 

Metric Detail Units Comments 

Vdd_nom Nominal operating supply voltage V  

Vdd_min Min operating supply voltage V  

Top_nom Nominal operating temperature °C  

Top_max Max operating temperature °C  

Nctrl Number of control inputs   
Nin/Nout Number of data inputs / outputs   

Tprog Programming time per function s Measured under nominal operating conditions 

Eprog Programming energy per function J Measured under nominal operating conditions 

Lex Execution latency per function s Measured under nominal operating conditions 

Eex Execution energy per function J Measured under nominal operating conditions 

Threx Execution throughput per function bits/s Measured under nominal operating conditions 
Ncells Resource count (number of cells)   

Vol Volume m3  

Err_count Reliability errors /  
operation 

Measured under nominal operating conditions 
and worst case operating conditions 
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4. Conclusion 

This deliverable has described the first version of the virtual scalable Neural Network Compute Cube (N2C2). 
Its principal function is to carry out element-wise non-volatile matrix multiplication, accumulation and 
activation through a non-linear function. We have covered the architectural specifications and description of 
planned implementations of the N2C2 block, including technological variants, logic design styles and 
performance metrics. 

As technology development and logic cell design is still in early stages, this version of D4.05 is intended to 
serve as a reference document. This information will be used mainly in WP4 (to focus logic cell design work 
towards a scaled down version of N2C2 in D4.4 scheduled for M30+2 as well as a second version of the virtual 
scalable N2C2 in D4.5b scheduled for M36+2). In particular, this will serve in logic cell library development in 
T4.1 (Logic cell design, optimization and validation) compatible with logic synthesis approaches: 

• For baseline Static-CMOS architecture: fixed combinatorial logic blocks (classic CMOS / PTL design style), 
volatile memory (classic SRAM) 

• For SRAM / NV-LUT logic in memory (results caching) 

• For reconfigurable logic blocks (classic SRAM-based LUT / non-volatile LUT) 

• For data-reconfigurable logic – non-volatile logic 

• For ambipolar connection-based / NV-ambipolar 3D-nanofabric – high-expressivity logic blocks (XOR / 
tile / NV-tile) 

It will also be used in WP5 to enable architectural exploration in D5.2 scheduled for M20+2 and M36+2. 

As the FVLLMONTI project progresses, the content of this deliverable will also be updated to reflect 
opportunities and limitations that appear according to the state of technology and logic circuit development. 
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5. Appendix 
 

I. ARCHITECTURE CODE 

 
package.vhd 
 
package n2c2_package is 

       constant n: integer := 32; 

       constant p: integer := 8;     

 end n2c2_package; 

 

N2C2.vhd 

 

library work; 

use work.n2c2_package.all; 

  

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

 

 

 

--------------------------------------------------- 

 

entity N2C2 is 

 

port( A, B, X, W: in std_logic_vector(n - 1 downto 0); 

 clk :  in std_logic; 

 rst :  in std_logic; 

 Cin :  in std_logic; 

 Neuron: in std_logic; 

 BW :  in std_logic_vector (1 downto 0); 

 Mode :  in std_logic_vector (2 downto 0); 

 Cout :  out std_logic; 

 Y: out std_logic_vector(n -1 downto 0) 

); 

 

end N2C2; 

 

---------------------------------------------------- 

 

architecture behv of N2C2 is 

 

---- Component declaration 

 

component acc_reg is 

 

port( D: in std_logic_vector(2*n + p -1 downto 0); 

 clk: in std_logic; 

 rst: in std_logic; 

 Q: out std_logic_vector(2*n + p -1  downto 0) 

); 

end component; 

 

 

component multiplier is 

 

port( A, B: in std_logic_vector(n-1 downto 0); 

 BW: in std_logic_vector (1 downto 0); 

 Z: out std_logic_vector(2*n-1 downto 0) 

); 

 

end component; 

 

component adder is 
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port( A, B: in std_logic_vector(2*n + p -1 downto 0); 

 Cin :  in std_logic; 

 Cout :  out std_logic; 

 Z: out std_logic_vector(2*n + p -1 downto 0) 

); 

 

end component; 

 

---- Internal signals 

 

signal out_multiplier :  std_logic_vector (2*n -1 downto 0); 

signal in_adder_A, in_adder_B: std_logic_vector (2*n + p -1 downto 0); 

signal out_adder:   std_logic_vector (2*n + p -1 downto 0); 

signal in_acc_reg:   std_logic_vector (2*n + p -1 downto 0); 

signal out_acc_reg:   std_logic_vector (2*n + p -1 downto 0); 

signal out_truncation:   std_logic_vector (n-1 downto 0); 

 

 

 

begin 

 

 -- Components port maps 

 

 MULT: multiplier port map (X, W, BW, out_multiplier); 

 ADD: adder port map (in_adder_A, in_adder_B, Cin, Cout, out_adder); 

 ACC: acc_reg port map (in_acc_reg, clk, rst, out_acc_reg); 

 

   

 -- processes 

 

 mux_mul_to_add : process (Mode(1), B, out_multiplier) 

 begin 

  if (Mode(1) = '1') then 

   in_adder_B <= ( (2*n + p -1 downto 2*n => '0') & out_multiplier); 

  else 

   in_adder_B <= ( (2*n + p -1 downto n => '0') & B); 

  end if; 

 end process; 

  

   

 mux_MAC_to_add : process (Mode(0), A, out_acc_reg) 

 begin 

  if (Mode(0) = '1') then -- Accumulation 

   in_adder_A <=  out_acc_reg; 

  else 

   in_adder_A <= ( (2*n + p -1 downto n => '0') & A); 

  end if; 

 end process; 

 

 mux_truncation : process (Mode(0), Mode(2),   out_acc_reg, out_adder, out_multiplier) 

 begin 

  if (Mode(0) = '1' and Mode(2) = '1') then -- Accumulation 

   out_truncation <=  out_acc_reg(n-1 downto 0); 

  else 

   if (Mode(0) = '0' and Mode(2) = '0') then  

    out_truncation <= out_adder(n-1 downto 0); 

   

   elsif (Mode(0) = '1' and Mode(2) = '0') then  

     

    out_truncation <= out_multiplier(n-1 downto 0); 

    

   end if; 

   

  end if; 

 end process; 

 

 -- mux_neuron : to be implemented 

 in_acc_reg <= out_adder; 

 

 Y <= out_truncation; 

 

end behv; 

 

--------------------------------------------------- 
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II. COMPONENT CODE 
 
multiplier.vhd 

 

library work; 

use work.n2c2_package.all; 

  

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

 

 

 

--------------------------------------------------- 

 

entity multiplier is 

 

port( A, B: in std_logic_vector(n-1 downto 0); 

 BW: in std_logic_vector (1 downto 0); 

 Z: out std_logic_vector(2*n-1 downto 0) 

); 

 

end multiplier; 

 

---------------------------------------------------- 

 

architecture behv of multiplier is 

 

 

begin 

 

    process(A, B, BW) 

    begin 

 case BW is 

  when "00" =>   Z <= A*B; -- full precision 

  when "01" => -- half precision   

   Z(2*n-1 downto n) <= A(n-1 downto n/2) * B(n-1 downto n/2);  

   Z(n-1 downto 0) <= A(n/2-1 downto 0) * B(n/2-1 downto 0);  

  when "10" => -- quarter precision   

   Z(2*n-1 downto 3*n/2) <= A(n-1 downto 3*n/4) * B(n-1 downto 3*n/4);  

   Z(3*n/2 - 1  downto n) <= A(3*n/4 - 1  downto n/2) * B(3*n/4 - 1 downto n/2);  

   Z(n - 1  downto n/2) <= A(n/2 - 1  downto n/4) * B(n/2 - 1 downto n/4);  

   Z(n/2 - 1  downto 0) <= A(n/4 - 1  downto 0) * B(n/4 - 1 downto 0);  

  when "11" => -- octave precision   

   Z(2*n-1 downto 7*n/4) <= A(n-1 downto 7*n/8) * B(n-1 downto 7*n/8);  

   Z(7*n/4 - 1  downto 6*n/4) <= A(7*n/8 - 1  downto 6*n/8) * B(7*n/8 - 1 downto 

6*n/8);  

   Z(6*n/4 - 1  downto 5*n/4) <= A(6*n/8 - 1  downto 5*n/8) * B(6*n/8 - 1 downto 

5*n/8);  

   Z(5*n/4 - 1  downto n) <= A(5*n/8 - 1  downto 4*n/8) * B(5*n/8 - 1 downto 

4*n/8);  

   Z(n - 1  downto 3*n/4) <= A(4*n/8 - 1  downto 3*n/8) * B(4*n/8 - 1 downto 

3*n/8);  

   Z(3*n/4 - 1  downto 2*n/4) <= A(3*n/8 - 1  downto 2*n/8) * B(3*n/8 - 1 downto 

2*n/8);  

   Z(2*n/4 - 1  downto n/4) <= A(2*n/8 - 1  downto 1*n/8) * B(2*n/8 - 1 downto 

1*n/8);  

   Z(n/4 - 1  downto 0) <= A(1*n/8 - 1  downto 0) * B(1*n/8 - 1 downto 0);  

 

  when others => Z <= A*B; 

 end case; 

 

    end process; 

 

 

 

end behv; 

 

--------------------------------------------------- 
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adder.vhd 

 

library work; 

use work.n2c2_package.all; 

  

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

 

 

 

--------------------------------------------------- 

 

entity adder is 

 

port( A, B: in std_logic_vector(2*n + p -1 downto 0); 

 Cin :  in std_logic; 

 Cout :  out std_logic; 

 Z: out std_logic_vector(2*n + p -1 downto 0) 

); 

 

end adder; 

 

---------------------------------------------------- 

 

architecture behv of adder is 

 

 

signal tmp: std_logic_vector (2*n + p downto 0); 

 

begin 

 

    process(A, B, Cin)  

    begin 

 tmp <= ('0'&A) + ('0'&B)  + ((2*n +p downto 1  => '0')&Cin);  

    end process; 

 

    Cout <= tmp(2*n+p); 

    Z <= tmp (2*n +p -1 downto 0); 

 

end behv; 

 

--------------------------------------------------- 

 

 

register.vhd 

 

library work; 

use work.n2c2_package.all; 

  

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

 

 

 

--------------------------------------------------- 

 

entity acc_reg is 

 

port( D: in std_logic_vector(2*n + p -1 downto 0); 

 clk: in std_logic; 

 rst: in std_logic; 

 Q: out std_logic_vector(2*n + p -1  downto 0) 

); 

end acc_reg; 
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---------------------------------------------------- 

 

architecture behv of acc_reg is 

 

    signal Q_tmp: std_logic_vector(2*n + p - 1 downto 0); 

 

begin 

 

    process(D, clk, rst) 

    begin 

 

 if rst = '1' then 

            Q_tmp <= (Q_tmp'range => '0'); 

 elsif (clk='1' and clk'event) then 

  Q_tmp <= D; 

 end if; 

 

    end process; 

 

    Q <= Q_tmp; 

 

end behv; 

 

--------------------------------------------------- 

 

 

III. TESTBENCH CODE 
 

N2C2_tb.vhd 

 

library work; 

use work.n2c2_package.all; 

  

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

 

 

 

--------------------------------------------------- 

 

entity N2C2_tb is 

end N2C2_tb; 

 

---------------------------------------------------- 

 

architecture behv of N2C2_tb is 

 

---- Component declaration 

 

 

component N2C2 is 

 

port( A, B, X, W: in std_logic_vector(n - 1 downto 0); 

 clk :  in std_logic; 

 rst :  in std_logic; 

 Cin :  in std_logic; 

 Neuron: in std_logic; 

 BW :  in std_logic_vector (1 downto 0); 

 Mode :  in std_logic_vector (2 downto 0); 

 Cout :  out std_logic; 

 Y: out std_logic_vector(n -1 downto 0) 

); 

 

end component; 

 

 

 

---- Internal signals 
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signal clk, rst, Cin, Cout, Neuron:  std_logic; 

 

signal BW :   std_logic_vector (1 downto 0); 

signal Mode :   std_logic_vector (2 downto 0); 

signal sA, sB, sX, sW, sY:   std_logic_vector (n-1 downto 0); 

 

 

 

begin 

 

 -- Components port maps 

 

 N2C2_1: N2C2  port map (sA, sB, sX, sW, clk, rst, Cin, Neuron, BW, Mode, Cout, sY); 

 

   

 -- processes 

 

 Workload : process  

 begin 

  rst <= '1'; 

  wait for 1 ns; 

  rst <= '0'; 

  -- 32 bit 

  BW <= "00"; 

  Neuron <= '0'; 

  Mode <= "011";  -- multiplication   

  Cin <= '0'; 

  sA <=  x"00000000"; 

  sB <=  x"00000000"; 

  sX <= x"AAAAAAAA";   

  sW <= x"11111111";   

  wait for 10 ns; 

  -- 4 bit  

  BW <= "11"; 

  wait for 10 ns; 

 

  -- MAC 32 bits 

  rst <= '1'; 

  wait for 1 ns; 

  rst <= '0'; 

  Mode <= "111"; 

  BW <= "00"; 

  sX <= x"0000000A";   

  sW <= x"0000000A"; 

  wait for 40 ns; 

     

   

  

 

 end process; 

 

 Clock : process  

 begin 

  clk <= '0'; 

  wait for 5 ns; 

  clk <= '1'; 

  wait for 5 ns; 

   

 end process; 

  

   

 

end behv; 

 

--------------------------------------------------- 

 

 

N2C2_MM_tb.vhd 

 

library work; 
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use work.n2c2_package.all; 

  

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

 

 

 

 

--------------------------------------------------- 

 

entity N2C2_MM_tb is 

end N2C2_MM_tb; 

 

---------------------------------------------------- 

 

architecture behv of N2C2_MM_tb is 

 

---- Component declaration 

 

 

component N2C2 is 

 

port( A, B, X, W: in std_logic_vector(n - 1 downto 0); 

 clk :  in std_logic; 

 rst :  in std_logic; 

 Cin :  in std_logic; 

 Neuron: in std_logic; 

 BW :  in std_logic_vector (1 downto 0); 

 Mode :  in std_logic_vector (2 downto 0); 

 Cout :  out std_logic; 

 Y: out std_logic_vector(n -1 downto 0) 

); 

 

end component; 

 

 

 

---- Internal signals 

 

 

signal clk, rst, Cin, Cout, Neuron:  std_logic; 

 

signal BW :   std_logic_vector (1 downto 0); 

signal Mode_1, Mode_2, Mode_3, Mode_4 :  std_logic_vector (2 downto 0); 

signal sA11, sA12, sA31, sA32, sB12, sB22, sB13, sB23, sY1, sY3, sY2, sY4, dummy: std_logic_vector 

(n-1 downto 0); 

 

 

 

begin 

 

 -- Components port maps 

 

 N2C2_1: N2C2  port map (dummy, dummy, sA11, sB12, clk, rst, Cin, Neuron, BW, Mode_1, Cout, 

sY1); 

 N2C2_2: N2C2  port map (dummy, sY1, sA12, sB22, clk, rst, Cin, Neuron, BW, Mode_2, Cout, 

sY2); 

 N2C2_3: N2C2  port map (dummy, dummy, sA31, sB13, clk, rst, Cin, Neuron, BW, Mode_3, Cout, 

sY3); 

 N2C2_4: N2C2  port map (dummy, sY3, sA32, sB23, clk, rst, Cin, Neuron, BW, Mode_4, Cout, 

sY4); 

 

   

 -- processes 

 

 Workload : process  

 begin 

  rst <= '1'; 

  wait for 1 ns; 

  rst <= '0'; 

  -- 32 bit 

  BW <= "00"; 

  Neuron <= '0'; 

  Mode_1 <= "011";  -- multiplication   

  Mode_2 <= "011";  -- multiplication   
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  Mode_3 <= "011";  -- multiplication   

  Mode_4 <= "011";  -- multiplication   

  Cin <= '0'; 

  dummy <=  x"00000000"; 

  sA11 <= x"00000002"; 

  sB12 <= x"00000003"; 

  sA12 <= x"00000004"; 

  sB22 <= x"00000003";  -- C12 = A11*B12 + A12*B22 = 2*3 + 4*3 = 6 + 12 = 18  (dec) 

 

 

  sA31 <= x"00000005"; 

  sB13 <= x"00000004"; 

  sA32 <= x"00000001"; 

  sB23 <= x"0000000A";  -- C33 = A31*B13 + A32*B23 = 5*4 + 1*10 = 20 + 10 = 30 (dec) 

 

  wait for 10 ns; 

  Mode_2 <= "101";  -- multiplication   

  Mode_4 <= "101";  -- multiplication   

   

 

  wait for 10 ns; 

     

   

  

 

 end process; 

 

 Clock : process  

 begin 

  clk <= '0'; 

  wait for 5 ns; 

  clk <= '1'; 

  wait for 5 ns; 

   

 end process; 

  

   

 

end behv; 

 

--------------------------------------------------- 
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