

Call: H2020-FETPROACT-2020-01

Grant Agreement no. 101016776

Deliverable D04.05a

Virtual scalable N2C2 design and Pareto-front
data

Start date of the project: 1st January 2021

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 2

Duration: 60 months
Project Coordinator: Cristell MANEUX - University of Bordeaux
Contact: Cristell MANEUX - cristell.maneux@ims-bordeaux.fr

DOCUMENT CLASSIFICATION
Title Virtual scalable N2C2 design and Pareto-front data
Deliverable D4.05a
Estimated Delivery 31/08/2021 (M6+2)
Date of Delivery Foreseen 31/08/2021 (M6+2)
Actual Date of Delivery 31/08/2021 (M6+2)
Authors Giovanni Ansaloni – P5 - EPFL

David Atienza – P5 – EPFL
Alberto Bosio – P3 – ECL-INL
Ian O'Connor – P3 – ECL-INL

Approver Cristell Maneux – P1 – UBx
Work package WP4
Dissemination PU (Public)
Version V1.0
Doc ID Code D4.05a_FVLLMONTI_P3-ECL-INL-20210831
Keywords Neural network, logic design, specifications

DOCUMENT HISTORY
Version status V1.0
Date 26/08/2021 (M6+2)
Document revision NA
Date NA
Reason for change NA

DOCUMENT ABSTRACT
This document describes the first version of the virtual scalable Neural Network Compute Cube (N2C2). Its
principal function is to carry out element-wise non-volatile matrix multiplication, accumulation and activation
through a non-linear function. It features multiple means of configuration:

• number of inputs to each cell: configure the vertical routing of data between layers in both directions

• synaptic coefficients: program coefficients in memory elements and connect them to the multipliers

• various activation functions can be efficiently programmed in memory elements in a coarse-grain logic-
in-memory approach

As technology development and logic cell design is still in early stages, this version of D4.05 is intended to
serve as a reference document, containing a detailed description of functionality, high-level architecture and
performance metrics. This information will be used mainly in WP4 (to focus logic cell design work towards a
scaled down version of N2C2 in D4.4 scheduled for M30+2 as well as a second version of the virtual scalable
N2C2 in D4.5b scheduled for M36+2) and WP5 (to enable architectural exploration in D5.2 scheduled for
M20+2 and M36+2). As the FVLLMONTI project progresses, the content of this deliverable will be updated to
reflect opportunities and limitations that appear according to the state of technology and logic circuit
development.

mailto:cristell.maneux@ims-bordeaux.fr

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 3

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101016776.

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 4

TABLE OF CONTENT

DOCUMENT CLASSIFICATION ... 2

DOCUMENT HISTORY ... 2

DOCUMENT ABSTRACT .. 2

TABLE OF CONTENT ... 4

LIST OF FIGURES AND TABLES .. 5

LIST OF ACRONYMS / GLOSSARY ... 5

1. Target Functionality... 6

2. Proposed Architecture .. 7

I. Schematic and Behavior .. 7

II. Intended Use in Matrix Multiplication Architectures ... 10

3. Implementation and performance metrics ... 12

I. Technological Variants .. 12

II. Logic Design Styles... 13

III. Performance Metrics ... 14

4. Conclusion ... 16

5. Appendix .. 17

I. Architecture code .. 17

II. Component code ... 19

III. Testbench code ... 21

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 5

LIST OF FIGURES AND TABLES

Figure 1 : Neural Network Compute Cube (N2C2) – the big picture ... 6

Figure 2 : N2C2 schematic view ... 7

Figure 3 : N2C2 64-bit adder configuration ... 9

Figure 4 : N2C2 example simulation multiplication mode .. 9

Figure 5 : N2C2 example simulation MAC mode ... 10

Figure 6 : Matrix multiplication example ... 10

Figure 7 : N2C2 network first cycle .. 11

Figure 8 : N2C2 network second cycle ... 11

Figure 9 : N2C2 matrix multiplication example ... 12

Figure 10 : Examples of logic design styles to be explored in view of N2C2 implementation. Static CMOS

design style – XOR gate (a). PTL design style – XOR gate (b). Non-volatile design style – dynamic XOR gate

(c). Ambipolar design style – reconfigurable tile (d). ... 14

Table 1: N2C2 I/O signals ... 7

Table 2: N2C2 arithmetic functions ... 8

Table 3: N2C2 Precision Configuration .. 8

Table 4: Summary of technological variants .. 13

Table 5: Summary of performance metrics ... 15

LIST OF ACRONYMS / GLOSSARY
D: Deliverable

LUT: Look Up Table

M: Month of the project

MAC: Multiply Accumulate

N2C2: Neural Network Compute Cube

NN: Neural Network

P: Partner

PU: Public

V: Version

VNWFET: Vertical Nanowire Field Effect Transistor

WP: Work Package

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 6

1. Target Functionality

The Neural Network Compute Cube (N2C2) is a central concept to the FVLLMONTI project. It represents a
flexible computing hardware block for transformer-based neural networks. As illustrated in Figure 1, it will
be implemented based on a dedicated library of 3D logic cells leveraging VNWFET devices developed in T4.1
(Logic cell design, optimization and validation) and using technological hardware and data developed in WP1,
WP2 and WP3. It also connects through a reconfigurable 3D interconnect framework developed in T4.2
(Inter-cube interconnect framework) to implement a scalable and versatile 3D architectural model in
connection with WP5. Its fundamental properties of physical regularity, functional versatility and in-memory
vector processing will make it suitable to explore hardware/software co-design techniques in the context of
transformer-based neural networks for machine translation applications as well as quantization-based
approximate computing to reduce resource usage and energy consumption as well as enable more complex
network topologies.

Figure 1 : Neural Network Compute Cube (N2C2) – the big picture

The principal function of the N2C2 is to carry out element-wise non-volatile matrix multiplication,
accumulation and activation through a non-linear function. It features multiple means of configuration:

• Firstly, it is function-configurable. As a baseline operation, we define a 32-bit integer multiply-accumulate
function (MAC) which can also be broken down into its individual operations (multiply, addition,
accumulation and combinations of these). We also include resources to efficiently program an activation
function (e.g. sigmoid, tanh, rectified linear – ReLU, softplus …) that can be switched in and out of the
datapath. It is intended for the activation function to be implemented in memory elements in a coarse-
grain logic-in-memory approach.

• It is connectivity-configurable, meaning that it is possible to input from 2-8 operands as number of inputs
to each cell. Further, it is compatible with routing resources outside of the N2C2 (T4.2 – Intercube
interconnect framework) in order to (for example) handle feedback in recursive networks, or to configure
the vertical routing of data between layers in both directions.

• It is coefficient-configurable, meaning that it is possible to program synaptic coefficients in memory
elements and connect them to the multiplier function blocks.

• It is datawidth-configurable, in that it is possible to implement both intra-N2C2 scaledown from 1*32 bits
to 2*16 bits, 4*8 bits or 8*4 bits; and that it is also possible to handle inter-N2C2 scaleup to 64 bits, 128
bits, 256 bits, 512 bits.

The following sections will detail the architectural specifications and description of planned implementations
of the N2C2 block. In section 2, we will describe the proposed architecture in terms of its schematic and target

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 7

behavior, as well as its intended use in matrix multiplication architectures. Section 3 will cover the intended
implementations of the N2C2, including technological variants, target logic design styles and finally
performance measurements which will be extracted from circuit-level schematics and injected into higher-
level architectural models to enable performance assessment of complete architectures.

2. Proposed Architecture

I. SCHEMATIC AND BEHAVIOR

This section describes the schematic view of the N2C2 block as depicted in Figure 2.

Figure 2 : N2C2 schematic view

Table 1 summarizes the input/output signals, with the related direction, bit-width and type (data or control
signal).

Table 1: N2C2 I/O signals

Signal Direction Width (bit) Type

X

input
N

data

W
A

B

Y output

Cin input 1

Cout output 1

bw

input

2

control

mode0 1

mode1 1

mode2 1

neuron 1

Adder

multiplier

Acc reg

X nn

2n + p

2n+p

truncation

n

2n+p

2n +p

n

W

mode0

mode0

Y

bw

Act fun (LUT)

n

neuron

n

2n
mode1

<
<

 >
>

<< >>
2n2n

mode2

Cin

Cout

B

A

2n + p

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 8

The N2C2 is a sophisticated Programmable Multiply and Accumulate unit. Table 2 reports the available
arithmetic functions and the associated control signals values.

Table 2: N2C2 arithmetic functions

Output Control Signals Description

Y = X * Y
Acc = Y + A

mode1= 1
mode0= 1
mode2= 0

neuron = 0

multiplication

Y = X * Y + A
Acc = Y

mode1= 1
mode0= 0
mode2= 0

neuron = 0

multiplication addition

Y = X * Y + Acc
Acc = Acc + Y

mode1= 1
mode0= 1
mode2= 1

neuron = 0

multiplication
accumulation

(MAC)

Y = A + B
Acc = Y

mode1= 0
mode0= 0
mode2= 0

neuron = 0

addition

Y = B + Acc
Acc = Acc + Y

mode1= 0
mode0= 1
mode2= 1

neuron = 0

accumulation

Y = Act(R) neuron = 1

neuron mode with
activation function1. R can
be the result of any of the
above arithmetic functions

The N2C2 supports different levels of accuracy, in terms of bit-width of data processing. This is particularly
useful in energy/resource-critical applications where it can be useful to explore accuracy/resource usage
tradeoffs. The baseline accuracy is chosen to be n=32 (i.e. the bit-width of all data signals is 32 bits). By using
the ‘bw’ control signal, it is possible to reduce the accuracy (and hence reduce the resource usage and energy
consumption; or enable more complex NN architectures) as depicted in Table 3.

Table 3: N2C2 Precision Configuration

Precision (bit) Guard bits Control Signals Description Throughput

n=32 p=8 bw="00" default precision 1x

n=16 p=4 bw="01" half precision 2x

n=8 p=2 bw="10" quarter precision 4x

n=4 p=1 bw="11" octave precision 8x

Precision down-scaling is not the only option. It is also possible to up-scale the precision (e.g. to have n=64)
by using two or more N2C2. Figure 3 shows a simple example where two N2C2 blocks are connected together
to obtain a 64-bit adder. In a similar way, it is possible to perform 64-bit (or even higher) multiplications.

1 The activation function is stored in a Look up Table. The details about LUT implementation and its programming mode will be
further detailed.

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 9

Figure 3 : N2C2 64-bit adder configuration

The N2C2 has been implemented as a VHDL behavioral model in order to be able to carry out simulations to
ensure the correct functionality and to obtain performances in terms of clock cycles. The full VHDL code is
given in section 5 (appendix).

Figure 4 : N2C2 example simulation multiplication mode

Figure 4 depicts the waveforms obtained from the simulation of the VHDL model. The simulation
demonstrates the multiplication mode with two different levels of accuracy: (i) default (32-bit) precision and
(ii) octave (32/8, i.e. 4-bit) precision. The result is thus Y=X*W depending on the precision. The throughput
also depends on the precision: one multiplication at default precision, 8 multiplications in parallel executed
at octave precision.

N2C2

X WBA

Y

CinCout

mode bw

N2C2

X WBA

Y

Cin = 0Cout

mode bw

High => [63:32] Low => [31:0]

Mode Multiplication

Default Precision
(32bit)

Octave Precision (4bit)

Clk

Rst

X

W

Y

BW

Mode2, Mode1, Mode0

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 10

Figure 5 : N2C2 example simulation MAC mode

Figure 5 shows another example simulation, in which the N2C2 is configured as MAC at default precision. The
output Y=X*W+Acc is updated at each clock cycle (in the example, X=W=0Ah).

II. INTENDED USE IN MATRIX MULTIPLICATION ARCHITECTURES

The N2C2 block can be used to parallelize matrix multiplication operation and thus speed up the computation
of the transformers level. This provides a simple example of how to use an N2C2 network for matrix
multiplication using default precision. In Figure 6, we show operator-level computation of two elements c12
and c33 as part of a 4x3 matrix c resulting from the multiplication of a 4x2 matrix a by a 2x3 matrix b. For the
sake of simplicity, we will not cover the computation of the other elements of the c matrix, which can be
found trivially from the given example.

Figure 6 : Matrix multiplication example

Figure 7 sketches the N2C2 network and its configuration (structural connection). The four blocks are devoted
to computing the results c12 and c33. In the first cycle, each block is configured (see Table 2) to execute the
multiplication between elements of a and b previously fetched from the memory and necessary for the
computation.

Mode MAC

Default Precision
(32bit)

Clk
Rst

X
W

Y
Mode2, Mode1, Mode0

BW

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 11

Figure 7 : N2C2 network first cycle

Figure 8 shows the same network but during the second cycle. Here, blocks N2C2
2 and N2C2

4 are each
configured to execute an addition operation, resulting in c12 (from N2C2

2) and c33 (from N2C2
4).

Figure 8 : N2C2 network second cycle

Figure 9 presents the simulation waveforms of the matrix multiplication presented above. Here we fix the
following input values:

• a11 = 2; a12 = 4; a31 = 5; a32 = 1

• b12 = 3; b22 = 3; b13 = 4; b23 = 10;

Consequently, the outputs are:

• c12 = a11*b12 + a12*b22 = 2*3 + 4*3 = 6 + 12 = 18 (12h)

• c33 = a31*b13 + a32*b23 = 5*4 + 1*10 = 20 + 10 = 30 (1Eh)

In the first cycle, all N2C2 blocks are configured to multiplication mode in order to compute the intermediate
values. In the second and final cycle, blocks 2 and 4 are configured to addition mode. The figure highlights
the final results.

N2C21

N2C23

N2C22

N2C24

a11

b12
b22

a12

b13 b23

a31 a32

N2C21

N2C23

N2C22

N2C24

c12

c33

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 12

Figure 9 : N2C2 matrix multiplication example

3. Implementation and performance metrics

There are multiple technological variants and logic design styles that can implement the N2C2; and there are
also multiple configurations (i.e. N2C2 network structures) that can execute the same operations. Each
configuration is characterized by its latency (i.e. how many cycles are required to execute the operation), the
area (i.e. how many N2C2 blocks are required) and finally the power/energy.

I. TECHNOLOGICAL VARIANTS

In this section we detail the various options to be explored in terms of technological implementation, which
will then be evaluated at circuit-level to extract design data to be used in higher-level system simulations.

The FVLLMONTI project will explore several avenues of research at the technological level.

The baseline technology consists of the vertical nanowire field effect transistor (VNWFET) with a single gate

(variant ). The design parameter at this level is essentially the number of nanowires per transistor, where
the pitch between nanowires is a technological parameter that will be optimized according to tradeoffs
between density (footprint), inter-nanowire capacitance, reliability and yield.

Gate stacking is advantageous for logic density where multiple transistors in series are needed. This will be

explored at the device hardware level with a 2-gate stack (variant ) as well as virtually (using TCAD

simulations) with a 3-gate stack (variant ).

Ambipolarity (electrostatic doping of the VNWFET channel) enables fine-grain logic reconfigurability but also
requires a polarity gate to control the type of majority carriers in the channel. It therefore requires two gates

on a single device. This can be achieved either with a 1-gate stack using a U-type configuration (variant ) or

with a 2-gate stack, where one of the gates is the polarity gate (variant ).

Cycle 1: All blocks are in
Multiplication Mode Cycle 2: blocks 2 and 4 are

in Addition Mode

C12

C33

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 13

The integration of a ferroelectric layer in the transistor gate stack enables non-volatile behavior (memory or
configuration) directly within the transistor. This will be explored at the device hardware level with a 1-gate

stack (variant ) as well as virtually (using TCAD simulations) with a 2-gate stack (variant ).

Finally, the mixing of these variants will also be explored virtually and used in the design of dense, fine-grain

reconfigurable, non-volatile logic gates (variants  and fvllmonti).

Table 4 summarizes the technological variants that will be used to build logic cell libraries in the context of
implementation of N2C2.

Table 4: Summary of technological variants

Variant Gate stack Ambipolar Ferroelectric hardware

 1 no no yes

 2 no no yes

 3 no no no

 1 yes (U) no yes

 2 yes no no

 1 no yes yes

 2 no yes no

 1 yes (U) yes no

fvllmonti 2 yes yes no

II. LOGIC DESIGN STYLES

Several design styles can be considered for implementation of logic functions. Each design style has its own
merits and shortcomings, and thus a proper choice has to be made by designers in order to provide the
correct functionality. This is true in all technologies, and is given a further degree of importance with the 3D
VNWFET technology due to (a) the possibility of vertical stacking, (b) the possibility of reorienting the channel
direction by 90°, (c) fine-grain reconfigurability and (d) non-volatile behavior.

Candidate design styles considered of interest for the VNWFET technology are:

• Static CMOS-like: this is the baseline design style using pull-up and pull-down switching networks to
enable propagation of the voltage of one of the two power rails (gnd='0', Vdd='1') based on the state of
the inputs, which can only access transistors via the gate terminals.

• Pass Transistor Logic (PTL): this design style propagates data directly through transistor channels by
allowing inputs to access the transistor either on the gate terminal or on one of the source/drain
terminals. While this leads to more compact logic structures, the transistor channel resistance can lead
to limited fanout and logic level degradation. However, as gate stacking is naturally suited to multiple
transistors in series, the PTL approach presents an opportunity for exploration of such compact
structures.

• Non-volatile (NV) logic: non-volatile ferroelectric transistor devices enable the storage of an operand
data value within the device itself, followed by the arrival of a second operand data value. This approach
is particularly well adapted to applications where one operand varies rarely (e.g. NN weight coefficient)
while the other varies often.

• Ambipolar logic: electrostatic doping enables a single hardware device to achieve either n-type or p-type
switching functionality, and therefore leads to attractive solutions for fine-grain reconfigurability, flexible
hardware substrates and dense, regular architectures. The combination of ambipolarity and ferroelectric
behavior also enables the non-volatile storage of a configuration value. A generic tile-based structure

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 14

presents opportunities for exploration. Particular points of concern will be leakage current and
interconnect limitations.

Examples of these four types of logic design style are given in Figure 10.

(a)

(b)

(c) (d)

Figure 10 : Examples of logic design styles to be explored in view of N2C2 implementation. Static CMOS design style – XOR gate
(a). PTL design style – XOR gate (b). Non-volatile design style – dynamic XOR gate (c). Ambipolar design style – reconfigurable tile

(d).

III. PERFORMANCE METRICS

Specifications for the design space (i.e. performance metrics to be extracted from N2C2 hardware
measurements and/or simulations) are detailed in this section. The design spaces will be populated with data
in the form of Pareto Fronts and originating from circuit-level simulations using technological variants
described in the previous section in D4.05b.

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 15

Table 5: Summary of performance metrics

Metric Detail Units Comments

Vdd_nom Nominal operating supply voltage V

Vdd_min Min operating supply voltage V

Top_nom Nominal operating temperature °C

Top_max Max operating temperature °C

Nctrl Number of control inputs
Nin/Nout Number of data inputs / outputs

Tprog Programming time per function s Measured under nominal operating conditions

Eprog Programming energy per function J Measured under nominal operating conditions

Lex Execution latency per function s Measured under nominal operating conditions

Eex Execution energy per function J Measured under nominal operating conditions

Threx Execution throughput per function bits/s Measured under nominal operating conditions
Ncells Resource count (number of cells)

Vol Volume m3

Err_count Reliability errors /
operation

Measured under nominal operating conditions
and worst case operating conditions

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 16

4. Conclusion

This deliverable has described the first version of the virtual scalable Neural Network Compute Cube (N2C2).
Its principal function is to carry out element-wise non-volatile matrix multiplication, accumulation and
activation through a non-linear function. We have covered the architectural specifications and description of
planned implementations of the N2C2 block, including technological variants, logic design styles and
performance metrics.

As technology development and logic cell design is still in early stages, this version of D4.05 is intended to
serve as a reference document. This information will be used mainly in WP4 (to focus logic cell design work
towards a scaled down version of N2C2 in D4.4 scheduled for M30+2 as well as a second version of the virtual
scalable N2C2 in D4.5b scheduled for M36+2). In particular, this will serve in logic cell library development in
T4.1 (Logic cell design, optimization and validation) compatible with logic synthesis approaches:

• For baseline Static-CMOS architecture: fixed combinatorial logic blocks (classic CMOS / PTL design style),
volatile memory (classic SRAM)

• For SRAM / NV-LUT logic in memory (results caching)

• For reconfigurable logic blocks (classic SRAM-based LUT / non-volatile LUT)

• For data-reconfigurable logic – non-volatile logic

• For ambipolar connection-based / NV-ambipolar 3D-nanofabric – high-expressivity logic blocks (XOR /
tile / NV-tile)

It will also be used in WP5 to enable architectural exploration in D5.2 scheduled for M20+2 and M36+2.

As the FVLLMONTI project progresses, the content of this deliverable will also be updated to reflect
opportunities and limitations that appear according to the state of technology and logic circuit development.

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 17

5. Appendix

I. ARCHITECTURE CODE

package.vhd

package n2c2_package is

 constant n: integer := 32;

 constant p: integer := 8;

 end n2c2_package;

N2C2.vhd

library work;

use work.n2c2_package.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity N2C2 is

port(A, B, X, W: in std_logic_vector(n - 1 downto 0);

 clk : in std_logic;

 rst : in std_logic;

 Cin : in std_logic;

 Neuron: in std_logic;

 BW : in std_logic_vector (1 downto 0);

 Mode : in std_logic_vector (2 downto 0);

 Cout : out std_logic;

 Y: out std_logic_vector(n -1 downto 0)

);

end N2C2;

--

architecture behv of N2C2 is

---- Component declaration

component acc_reg is

port(D: in std_logic_vector(2*n + p -1 downto 0);

 clk: in std_logic;

 rst: in std_logic;

 Q: out std_logic_vector(2*n + p -1 downto 0)

);

end component;

component multiplier is

port(A, B: in std_logic_vector(n-1 downto 0);

 BW: in std_logic_vector (1 downto 0);

 Z: out std_logic_vector(2*n-1 downto 0)

);

end component;

component adder is

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 18

port(A, B: in std_logic_vector(2*n + p -1 downto 0);

 Cin : in std_logic;

 Cout : out std_logic;

 Z: out std_logic_vector(2*n + p -1 downto 0)

);

end component;

---- Internal signals

signal out_multiplier : std_logic_vector (2*n -1 downto 0);

signal in_adder_A, in_adder_B: std_logic_vector (2*n + p -1 downto 0);

signal out_adder: std_logic_vector (2*n + p -1 downto 0);

signal in_acc_reg: std_logic_vector (2*n + p -1 downto 0);

signal out_acc_reg: std_logic_vector (2*n + p -1 downto 0);

signal out_truncation: std_logic_vector (n-1 downto 0);

begin

 -- Components port maps

 MULT: multiplier port map (X, W, BW, out_multiplier);

 ADD: adder port map (in_adder_A, in_adder_B, Cin, Cout, out_adder);

 ACC: acc_reg port map (in_acc_reg, clk, rst, out_acc_reg);

 -- processes

 mux_mul_to_add : process (Mode(1), B, out_multiplier)

 begin

 if (Mode(1) = '1') then

 in_adder_B <= ((2*n + p -1 downto 2*n => '0') & out_multiplier);

 else

 in_adder_B <= ((2*n + p -1 downto n => '0') & B);

 end if;

 end process;

 mux_MAC_to_add : process (Mode(0), A, out_acc_reg)

 begin

 if (Mode(0) = '1') then -- Accumulation

 in_adder_A <= out_acc_reg;

 else

 in_adder_A <= ((2*n + p -1 downto n => '0') & A);

 end if;

 end process;

 mux_truncation : process (Mode(0), Mode(2), out_acc_reg, out_adder, out_multiplier)

 begin

 if (Mode(0) = '1' and Mode(2) = '1') then -- Accumulation

 out_truncation <= out_acc_reg(n-1 downto 0);

 else

 if (Mode(0) = '0' and Mode(2) = '0') then

 out_truncation <= out_adder(n-1 downto 0);

 elsif (Mode(0) = '1' and Mode(2) = '0') then

 out_truncation <= out_multiplier(n-1 downto 0);

 end if;

 end if;

 end process;

 -- mux_neuron : to be implemented

 in_acc_reg <= out_adder;

 Y <= out_truncation;

end behv;

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 19

II. COMPONENT CODE

multiplier.vhd

library work;

use work.n2c2_package.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity multiplier is

port(A, B: in std_logic_vector(n-1 downto 0);

 BW: in std_logic_vector (1 downto 0);

 Z: out std_logic_vector(2*n-1 downto 0)

);

end multiplier;

--

architecture behv of multiplier is

begin

 process(A, B, BW)

 begin

 case BW is

 when "00" => Z <= A*B; -- full precision

 when "01" => -- half precision

 Z(2*n-1 downto n) <= A(n-1 downto n/2) * B(n-1 downto n/2);

 Z(n-1 downto 0) <= A(n/2-1 downto 0) * B(n/2-1 downto 0);

 when "10" => -- quarter precision

 Z(2*n-1 downto 3*n/2) <= A(n-1 downto 3*n/4) * B(n-1 downto 3*n/4);

 Z(3*n/2 - 1 downto n) <= A(3*n/4 - 1 downto n/2) * B(3*n/4 - 1 downto n/2);

 Z(n - 1 downto n/2) <= A(n/2 - 1 downto n/4) * B(n/2 - 1 downto n/4);

 Z(n/2 - 1 downto 0) <= A(n/4 - 1 downto 0) * B(n/4 - 1 downto 0);

 when "11" => -- octave precision

 Z(2*n-1 downto 7*n/4) <= A(n-1 downto 7*n/8) * B(n-1 downto 7*n/8);

 Z(7*n/4 - 1 downto 6*n/4) <= A(7*n/8 - 1 downto 6*n/8) * B(7*n/8 - 1 downto

6*n/8);

 Z(6*n/4 - 1 downto 5*n/4) <= A(6*n/8 - 1 downto 5*n/8) * B(6*n/8 - 1 downto

5*n/8);

 Z(5*n/4 - 1 downto n) <= A(5*n/8 - 1 downto 4*n/8) * B(5*n/8 - 1 downto

4*n/8);

 Z(n - 1 downto 3*n/4) <= A(4*n/8 - 1 downto 3*n/8) * B(4*n/8 - 1 downto

3*n/8);

 Z(3*n/4 - 1 downto 2*n/4) <= A(3*n/8 - 1 downto 2*n/8) * B(3*n/8 - 1 downto

2*n/8);

 Z(2*n/4 - 1 downto n/4) <= A(2*n/8 - 1 downto 1*n/8) * B(2*n/8 - 1 downto

1*n/8);

 Z(n/4 - 1 downto 0) <= A(1*n/8 - 1 downto 0) * B(1*n/8 - 1 downto 0);

 when others => Z <= A*B;

 end case;

 end process;

end behv;

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 20

adder.vhd

library work;

use work.n2c2_package.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity adder is

port(A, B: in std_logic_vector(2*n + p -1 downto 0);

 Cin : in std_logic;

 Cout : out std_logic;

 Z: out std_logic_vector(2*n + p -1 downto 0)

);

end adder;

--

architecture behv of adder is

signal tmp: std_logic_vector (2*n + p downto 0);

begin

 process(A, B, Cin)

 begin

 tmp <= ('0'&A) + ('0'&B) + ((2*n +p downto 1 => '0')&Cin);

 end process;

 Cout <= tmp(2*n+p);

 Z <= tmp (2*n +p -1 downto 0);

end behv;

register.vhd

library work;

use work.n2c2_package.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity acc_reg is

port(D: in std_logic_vector(2*n + p -1 downto 0);

 clk: in std_logic;

 rst: in std_logic;

 Q: out std_logic_vector(2*n + p -1 downto 0)

);

end acc_reg;

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 21

--

architecture behv of acc_reg is

 signal Q_tmp: std_logic_vector(2*n + p - 1 downto 0);

begin

 process(D, clk, rst)

 begin

 if rst = '1' then

 Q_tmp <= (Q_tmp'range => '0');

 elsif (clk='1' and clk'event) then

 Q_tmp <= D;

 end if;

 end process;

 Q <= Q_tmp;

end behv;

III. TESTBENCH CODE

N2C2_tb.vhd

library work;

use work.n2c2_package.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity N2C2_tb is

end N2C2_tb;

--

architecture behv of N2C2_tb is

---- Component declaration

component N2C2 is

port(A, B, X, W: in std_logic_vector(n - 1 downto 0);

 clk : in std_logic;

 rst : in std_logic;

 Cin : in std_logic;

 Neuron: in std_logic;

 BW : in std_logic_vector (1 downto 0);

 Mode : in std_logic_vector (2 downto 0);

 Cout : out std_logic;

 Y: out std_logic_vector(n -1 downto 0)

);

end component;

---- Internal signals

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 22

signal clk, rst, Cin, Cout, Neuron: std_logic;

signal BW : std_logic_vector (1 downto 0);

signal Mode : std_logic_vector (2 downto 0);

signal sA, sB, sX, sW, sY: std_logic_vector (n-1 downto 0);

begin

 -- Components port maps

 N2C2_1: N2C2 port map (sA, sB, sX, sW, clk, rst, Cin, Neuron, BW, Mode, Cout, sY);

 -- processes

 Workload : process

 begin

 rst <= '1';

 wait for 1 ns;

 rst <= '0';

 -- 32 bit

 BW <= "00";

 Neuron <= '0';

 Mode <= "011"; -- multiplication

 Cin <= '0';

 sA <= x"00000000";

 sB <= x"00000000";

 sX <= x"AAAAAAAA";

 sW <= x"11111111";

 wait for 10 ns;

 -- 4 bit

 BW <= "11";

 wait for 10 ns;

 -- MAC 32 bits

 rst <= '1';

 wait for 1 ns;

 rst <= '0';

 Mode <= "111";

 BW <= "00";

 sX <= x"0000000A";

 sW <= x"0000000A";

 wait for 40 ns;

 end process;

 Clock : process

 begin

 clk <= '0';

 wait for 5 ns;

 clk <= '1';

 wait for 5 ns;

 end process;

end behv;

N2C2_MM_tb.vhd

library work;

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 23

use work.n2c2_package.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity N2C2_MM_tb is

end N2C2_MM_tb;

--

architecture behv of N2C2_MM_tb is

---- Component declaration

component N2C2 is

port(A, B, X, W: in std_logic_vector(n - 1 downto 0);

 clk : in std_logic;

 rst : in std_logic;

 Cin : in std_logic;

 Neuron: in std_logic;

 BW : in std_logic_vector (1 downto 0);

 Mode : in std_logic_vector (2 downto 0);

 Cout : out std_logic;

 Y: out std_logic_vector(n -1 downto 0)

);

end component;

---- Internal signals

signal clk, rst, Cin, Cout, Neuron: std_logic;

signal BW : std_logic_vector (1 downto 0);

signal Mode_1, Mode_2, Mode_3, Mode_4 : std_logic_vector (2 downto 0);

signal sA11, sA12, sA31, sA32, sB12, sB22, sB13, sB23, sY1, sY3, sY2, sY4, dummy: std_logic_vector

(n-1 downto 0);

begin

 -- Components port maps

 N2C2_1: N2C2 port map (dummy, dummy, sA11, sB12, clk, rst, Cin, Neuron, BW, Mode_1, Cout,

sY1);

 N2C2_2: N2C2 port map (dummy, sY1, sA12, sB22, clk, rst, Cin, Neuron, BW, Mode_2, Cout,

sY2);

 N2C2_3: N2C2 port map (dummy, dummy, sA31, sB13, clk, rst, Cin, Neuron, BW, Mode_3, Cout,

sY3);

 N2C2_4: N2C2 port map (dummy, sY3, sA32, sB23, clk, rst, Cin, Neuron, BW, Mode_4, Cout,

sY4);

 -- processes

 Workload : process

 begin

 rst <= '1';

 wait for 1 ns;

 rst <= '0';

 -- 32 bit

 BW <= "00";

 Neuron <= '0';

 Mode_1 <= "011"; -- multiplication

 Mode_2 <= "011"; -- multiplication

D4.05a_FVLLMONTI_P3-ECL-INL-20210831 24

 Mode_3 <= "011"; -- multiplication

 Mode_4 <= "011"; -- multiplication

 Cin <= '0';

 dummy <= x"00000000";

 sA11 <= x"00000002";

 sB12 <= x"00000003";

 sA12 <= x"00000004";

 sB22 <= x"00000003"; -- C12 = A11*B12 + A12*B22 = 2*3 + 4*3 = 6 + 12 = 18 (dec)

 sA31 <= x"00000005";

 sB13 <= x"00000004";

 sA32 <= x"00000001";

 sB23 <= x"0000000A"; -- C33 = A31*B13 + A32*B23 = 5*4 + 1*10 = 20 + 10 = 30 (dec)

 wait for 10 ns;

 Mode_2 <= "101"; -- multiplication

 Mode_4 <= "101"; -- multiplication

 wait for 10 ns;

 end process;

 Clock : process

 begin

 clk <= '0';

 wait for 5 ns;

 clk <= '1';

 wait for 5 ns;

 end process;

end behv;

	DOCUMENT CLASSIFICATION
	DOCUMENT HISTORY
	DOCUMENT ABSTRACT
	TABLE OF CONTENT
	LIST OF FIGURES AND TABLES
	LIST OF ACRONYMS / GLOSSARY
	1. Target Functionality
	2. Proposed Architecture
	I. Schematic and Behavior
	II. Intended Use in Matrix Multiplication Architectures
	3. Implementation and performance metrics
	I. Technological Variants
	II. Logic Design Styles
	III. Performance Metrics
	4. Conclusion
	5. Appendix
	I. Architecture code
	II. Component code
	III. Testbench code

