
1

Complexity Assessment of Analog Security
Primitives Using the Disentropy of Autocorrelation

Paul Jimenez, Raphael Cardoso, Maurı́cio Gomes de Queiroz, Mohab Abdalla, Cédric Marchand, Xavier Letartre,
and Fabio Pavanello

Abstract—The study of regularity in signals can be of great
importance, typically in medicine to analyse electrocardiogram
(ECG) or electromyography (EMG) signals, but also in climate
studies, finance or security. In this work we focus on security
primitives such as Physical Unclonable Functions (PUFs) or
Pseudo-Random Number Generators (PRNGs). Such primitives
must have a high level of complexity or entropy in their responses
to guarantee enough security for their applications. There are
several ways of assessing the complexity of their responses,
especially in the binary domain. With the development of analog
PUFs such as optical (photonic) PUFs, it would be useful to
be able to assess their complexity in the analog domain when
designing them, for example, before converting analog signals
into binary. In this numerical study, we decided to explore the
potential of the disentropy of autocorrelation as a measure of
complexity for security primitives as PUFs or PRNGs with analog
output or responses. We compare this metric to others used to
assess regularities in analog signals such as Approximate Entropy
(ApEn) and Fuzzy Entropy (FuzEn). We show that the disentropy
of autocorrelation is able to differentiate between well-known
PRNGs and non-optimised or bad PRNGs in the analog and
binary domain with a better contrast than ApEn and FuzEn.
Next, we show that the disentropy of autocorrelation is able to
detect small patterns injected in PUFs responses and then we
applied it to photonic PUFs simulations.

Index Terms—Complexity, disentropy, Pseudo Random Num-
ber Generators (PRGNs), Physical Unclonable Functions (PUFs).

I. INTRODUCTION

PHYSICAL Unclonable Functions (PUFs) represent a class
of physical security primitives. They play the role of a

physical key protecting an object that may be digital/analog
data or electronic (and photonic) hardware. For some appli-
cations, they might be perceived as the electronic or photonic
analogy of the biometric characteristics of a human being,
such as fingerprints [1], and provide interesting solutions in
the context of the Internet of Things (IoT) [2].

PUF security is based on the disorder, unpredictability, and
randomness of the manufacturing processes.

This work was supported by the French Agence Nationale de la Recherche
under project number ANR-20-CE39-0004 - PHASEPUF project. F.P., X.L.,
and C.M. acknowledge funding from the European Union’s Horizon Europe
research and innovation program under grant agreement No. 101070238.
Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for them.

P. Jimenez, R. Cardoso, M. Gomes de Queiroz, M. Abdalla, C. Marchand
and X. Letartre are with Ecole Centrale de Lyon, INSA Lyon, CNRS,
Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69130 Ecully,
France

F. Pavanello is with Univ. Grenoble Alpes, Univ. Savoie Mont Blanc,
CNRS, Grenoble INP, IMEP-LAHC, 38000, Grenoble, France

M. Abdalla is also affiliated with School of Engineering, RMIT University,
Melbourne, VIC 3000, Australia

The sensitivity to this randomness is what confers on the
PUF its properties of uniqueness and non-clonability. [3].
A PUF links an input information e.g., a binary string, called
a “challenge” to a “response” in an ideally deterministic way
forming a so-called challenge-response pair (CRP), that is
not possible to be predicted in advance. Most of the time
PUFs operate with multiple challenges, therefore multiple
CRPs (CRPs library). Hence, the PUF should fulfil some
characteristics [3], [4]:

• Physical uniqueness: As explained before, the PUF
should act as a fingerprint due to fabrication variations.

• Physical unclonability: Even with good equipment, an
adversary should not be able to reproduce the PUF thanks
to the unpredictability of fabrication variations.

• Digital unpredictability: It should be impossible to model
the behavior of the PUF numerically (using machine
learning attacks for example).

• Reliability: The PUF should be stable, i.e, for the same
PUF instance, the same challenge should give the same
response (within a certain error tolerance). This stability
should hold over time, even in slightly different experi-
mental conditions.

Depending on the application, some conditions have to be
established on the challenge library size and on the quality of
the responses. Especially in the case of a strong PUF, mostly
suitable for authentication protocols, the CRP library should
be very large, ideally uncountable. In that case, it should not be
possible for an adversary to have access to a large portion of
the CRPs dataset in a reasonable amount of time. Furthermore,
the responses should be complex enough so that responses
potentially harvested by an attacker cannot be used to train an
algorithm able to predict the rest of the CRPs and to model
the PUF behavior.
Consequently, the responses of a PUF must not have patterns
that are repeated both within each individual response and
between responses. As a result, we should not detect patterns
in the responses taken individually, nor in the concatenation
of responses coming from the same PUF instance. Moreover,
no patterns should be observed from the concatenation of
responses of different PUF instances for a same challenge.
Moreover, this argument applies also to cryptographic prim-
itives for random number generators (RNGs) in the analog
domain which require the absence of repeating patterns.

There is an entire zoo of PUFs, most of which are electronic
ones and operate in the binary domain as the Arbiter, SRAM,
or Butterfly PUFs [5]. For these PUFs, the NIST test suite
[6], especially suited for the analysis of binary data, can

ar
X

iv
:2

40
2.

17
48

8v
1

 [
cs

.C
R

]
 2

7
Fe

b
20

24

2

be used to evaluate some of the statistical properties of the
responses [7]. However, PUFs can also operate in the analog
domain, especially in some recent implementations of optical
and photonic PUFs [3].
Nevertheless, there is an important question to address when
considering PUFs that operate in the analog domain. The
impact of fabrication variations affect some physical param-
eters, but PUFs output signals may present the need for a
conversion from the analog to the binary domain to obtain
responses that can be further used at a system level [8]- [11].
The quality of such responses will be impacted by the chosen
conversion scheme: a different scheme will lead to different
responses and probably different responses quality. Here by
responses quality we refer to the responses complexity and
entropy. Besides, post-processing may be needed to improve
the responses quality. For example, in the first optical PUF
by Pappu and co-workers in 2002 [12], the optical output of
the PUF is a speckle pattern recorded on a 320 × 240 pixel
camera that passes through a threshold filter to obtain an output
in the binary domain, and finally through a Gabor transform
to obtain a 2400-bit key. As discussed in [13], the entropy of
the output response strongly depends on this transformation.
A Gabor transformed image has regularities (zebra-stripes)
leading to important patterns in the responses and hence to
low entropy. Therefore, the Gabor transform may remove parts
of the complexity contained in the optical speckle pattern.

This discussion can be also applied to silicon-photonic
PUFs. For example, in [8] the authors convert their analog
signal in the binary domain using a suite of Hadamard
matrices. They also apply different transformations on the
obtained binary signals to improve their quality (equalization,
grey code, and XOR).

In those cases, we observe that the final entropic quality of
a PUF is in fact the result of a combination of several steps:

1) The complexity of the physical device, its sensitivity to
fabrication variations and its randomness properties.

2) The quality of the analog to binary signal conversion i.e.,
if the conversion retains the entropy contained in the analog
signal.

3) The post-processing step to increase the complexity or
stability of the PUF.

Hence, while designing a PUF, it would be ideal for a
researcher to be able to work independently on each of these
steps. However, by using common benchmarks like the NIST
test suite, it is impossible to evaluate the PUF physical quality
since it requires a binary conversion.
Our goal is therefore to find a way of evaluating the physical
quality of a PUF design by looking at the complexity of its
responses in the analog domain, directly. In that case, the
Shannon entropy [14] used for binary data cannot be applied.
Since one of the basic requirements is the absence of repeating
patterns within or between responses, metrics based on the
autocorrelation function may be ideal candidates. Therefore,
in this paper, we propose to evaluate the performance of the
disentropy, a metric developed by R. V. Ramos for quantum
applications [15], [16], but also to obtain a score based on
the autocorrelation function [17]. We will first describe the
disentropy of the autocorrelation mathematically, then we will

introduce other metrics that are used to evaluate the complexity
of analog signals and afterwards we will compare them with
the disentropy. Finally, its performance will be evaluated on
PRNGs and PUF responses to assess whether this metric is
a good candidate or not to evaluate the quality of security
primitives working in the analog domain.

II. THE DISENTROPY OF THE AUTOCORRELATION
FUNCTION

A. The autocorrelation function

The autocorrelation function measures the similarity be-
tween a function or a signal and a delayed version of itself
with delay τ . In [16], [17] the authors claim that this function
can be used to measure some randomness present in the signal.
In case of a continuous signal s(t) in R, function of time t,
the autocorrelation function R(τ) is given by:

R(τ) =

∫ ∞

−∞
s(t)s∗(t− τ)dt (1)

For discrete signals, the autocorrelation function is given by:

rk =
ck
σ2
0

=
1
N

∑N−k
t=1 (st − s̄) (st+k − s̄)

σ2
0

(2)

With k the considered lag (delay), st the discrete signal value
at time t, s̄ the mean value of st and σ2

0 its sample variance.
It is important to note that the autocorrelation function can be
either positive or negative depending on whether two events
are correlated or anti-correlated.
As explained in [17] the goal is to obtain a score from the
function, hence, we need to map the function to a scalar. An
intuitive way to obtain it would be to use the Shannon entropy
H defined as [14]:

H = −
n∑

i=1

pi log(pi) (3)

Eq. 3 is expressed in terms of a discrete set of probabilities
{pi}. We can link the definition of entropy in Eq. 3 with the
Boltzmann-Gibbs entropy of thermodynamics as:

S = −k
W∑
i=1

pi ln(pi) (4)

with W ∈ N the total number of possible microscopic
configurations, pi their associated probabilities, and k the
Boltzmann constant. If the entropy is measured in units of
k per nat (natural unit of information) and pi = 1/W , Eq. 4
becomes:

S = k lnW (5)

However, since the autocorrelation function can have negative
values, it cannot be associated to a probability distribution.
Moreover, the logarithm would not be defined on negative
values so the classical definition of entropy as Shannon entropy
cannot be used to map the autocorrelation function to a scalar.

3

B. The construction of disentropy

In 1988 Tsallis generalised the definition of entropy for
multifractals systems with q ∈ R as [18]:

Sq = k
1−

∑
i p

q
i

q − 1
(6)

Eq. 6 tends to the Boltzmann-Gibbs entropy in the limit of
q → 1. Then, in 1994 he proposed a new way of interpreting
the experimental measurements as q−expectation values [19].
In this work he defines the generalised logarithmic function
as:

lnq(x) =
x(1−q) − 1

1− q
∀x ∈ R+ and q ̸= 1 (7)

This logarithm tends to the natural logarithm when q → 1 and
a generalised exponential function can be attributed to it:

exq = (1+(1−q)x)
1

1−q ∀x/(1+(1−q)x ≥ 0) and q ̸= 1 (8)

With this new logarithm definition (see Eq. 7), it is possible
to express the Tsallis q-entropy Sq as in Eq. 9.

Sq = −k
∑
i

pqi lnq(pi) (9)

Then, the authors introduced the Lambert function W (z)
[17], [20] to further extend the meaning of this definition of
entropy. W (z) is obtained by solving:

W (z)eW (z) = z (10)

This equation has an infinite number of solutions, but only two
branches give real values for z ∈ R. By taking the logarithm
of Eq. 3, neglecting k and defining z = pi it is possible to
obtain a definition of the Boltzmann-Gibbs entropy:

S = −
∑
i

pi ln(W (pi))−
∑
i

piW (pi) (11)

The term
∑

i piW (pi) is called the disentropy. It is minimal
when the entropy is maximal and vice-versa. It is important
to note here that the disentropy does not contain a logarithm
in its expression.

Next, this entropy is generalised using the Tsallis gener-
alised exponential and Lambert-Tsallis Wq function solution
of:

Wq(z)e
Wq(z)
q = z (12)

By taking the Tsallis q-logarithm of Eq. 12:

lnq(z) = Wq(z) + ((1− q)Wq(z) + 1) lnq(Wq(z)) (13)

At last, a probability pi is inserted in Eq. 12 with z = pi
and by using the Tsallis q-entropy of Eq. 9 neglecting k, one
obtains [16], [17]:

Sq = −
∑
i

pqiWq (pi)−
∑
i

pqi lnq [Wq (pi)]

− (1− q)
∑
i

pqiWq(pi) lnq [Wq (pi)] (14)

where the term:

Dq =
∑
i

pqiWq (pi) (15)

is the Tsallis q-disentropy. The authors define it also in the
continuous case as:

Dq =

∫ ∞

−∞
pq(x)Wq(p(x))dx (16)

Recall that the autocorrelation function can take values ranging
from −1 to 1. Therefore, a function Wq(R(τ)) defined on this
interval shall be found. The W2(z) function below is defined
on the interval of values taken by the autocorrelation function:

W2(z) =
z

z + 1
, z > −1 (17)

So, by replacing z = p(x) in Eq. 15 and Eq. 16 one obtains
a value for the disentropy in the continuous and discrete
probability distributions:

D2 =

∫ ∞

−∞

p3(x)

p(x) + 1
dx (18)

D2 =
∑
i

p3i
pi + 1

(19)

The authors have shown that this metric can be used for
functions that are not probability distributions. For example
in the case of the autocorrelation function in [16], [17]
and for the Wigner function in quantum mechanics in [21].
Therefore, in the case of autocorrelation function, they obtain
the disentropies given by Eq. (20) for continuous signals and
Eq. (21) for discrete ones.

D2 =

∫ ∞

−∞

R(τ)3

R(τ) + 1
dτ (20)

D2 =

N∑
k=1

r3k
rk + 1

(21)

With this metric it is possible to have a defined scalar
value for the complexity of a signal using the autocorrelation
function. A large positive or negative disentropy shows the
presence of correlations (or anti-correlations) within the signal.
Its ideal value is D2 = 0.5 obtained if R(τ) = δ(τ). Note that
the disentropy is not defined for R(τ) = −1 and rk = −1 i.e,
it is not defined in the case of perfect anti-correlation. In that
case, the metric diverges.

III. OTHER MEASURES OF COMPLEXITY

In our study of complexity measures for analog signals
based on the disentropy, we need to compare its performances
with those of other metrics. Below, we will discuss and
compare two of the most used metrics for assessing the
complexity of signals.

A. The Approximate Entropy

As mentioned in the introduction, the NIST test suite for
random and pseudo-rando generators generating binary signals
[6] is commonly used in cryptography and security to evaluate
the quality of security primitives [22], [23]. In this test suite
the Approximate Entropy (ApEn) is used to measure the
complexity and detect the presence of repeating patterns in

4

a binary signals. The ApEn has actually been developed by
Steven M. Pincus in 1991 [24] for any kind of vector in RN .
This metric is currently used in medicine for ECG and EMG
signals [25]–[27], but also in other domains such as climate
studies [28] or finance [29]. The full algorithm of ApEn can
be found in [24], [30] and summarized in Algorithm 1. This
algorithm has three parameters: m ∈ N+ called the embedding
dimension, r ∈ R+ called the noise filter or scaling parameter,
and N the number of samples. The ApEn takes patterns
of m points in the signal, then identifies other patterns that
are similar across the signal, and determines which of these
patterns remains similar for the following m + 1 points. If a
signal is completely repeatable, it remains repeatable by taking
m or m+1 points. In more mathematical terms, ApEn is based
on the conditional probability that a signal that repeated itself
for m points will repeat itself for m+ 1 points [27].

Algorithm 1 The Approximate Entropy algorithm.
Let s ∈ RN be a time series of length N , and n = N−m+1.
Define x ∈ Rm as:
x(i) = [s(i), s(i+ 1), ..., s(i+m− 1)] ∀i ∈ [1, n]
Then compute:

Cm
i (r) =

#j such that d[x(i), x(j) ≤ r]

n
with j ∈ [1, n]

With d a metric comparing two vectors:

d[x(i), x(j)] = max
k=1,...,m

(|s(i+ k − 1)− s(j + k − 1)|)

Next, compute ϕm:

ϕm(r) =
1

n

n∑
i=1

log (Cm
i (r))

The ApEn is then defined by:

ApEn(m, r,N) = ϕm(r)− ϕm+1(r)

In the computation of Cm
i (r), we see that for similarity

the algorithm compares blocks within the resolution r based
on the Heaviside function: if the difference is smaller than r
the patterns are considered similar, therefore r is usually a
function of the standard deviation of the signal.

B. The Fuzzy Entropy

The ApEn can be biased and may indicate more similarities
than contained in the series. It can also be inconsistent and
sensitive to a change in r, and depends on the length N of the
series [27], [30], [31]. Therefore, other metrics emerged, for
example the Sample Entropy (SampEn) developed by Richman
and Moorman in 2000 [31] fixes some of ApEn problems. In
fact, they have shown that SampEn does not depend on the
series length if N is big enough, and is less biased. This makes
SampEn interesting, but its results can still be untrustworthy
for small N [27], [32]. This problem is mainly linked to the
fact that both SampEn and ApEn use a Heaviside function as
a two state classifier for the blocks similarity. In reality, this
frontier is blurry and it is not easy to determine whether a

pattern belongs to one class or to the other [27], [32]. The
Fuzzy Entropy (FuzEn) has been introduced [27] to overcome
these problems by using the fuzzy sets theory developed by
Zadeh in 1965 [33]. In this paper, Zadeh introduced the idea
of fuzzy sets as a “class with a continuum of grades of
membership” with a “membership function” fA(x) associating
every object x of a space X to a real number in [0, 1]. fA(x)
represents this “grade of membership” of x in A. The closer
fA(x) is to 1, “the higher the grade of membership of x in
A” [33]
In [27] the authors use a family of exponential functions as
membership functions. However, other membership functions
can be used such as triangular, Z-shaped, constant-Gaussian as
presented in [32]. They are all functions of r and of a defined
distance metric comparing two vectors, as in Algorithm 1.

In our study, we will compare the results obtained with the
disentropy of the autocorrelation to the results obtained with
ApEn because of its use in cryptography for binary signals
and FuzEn to dispose of ApEn defaults. These metrics will be
first tested on different PRNGs of good and poor quality. All
metrics will be used to find regularities and patterns in their
outputs; ApEn and FuzEn by looking for repeating patterns
of size m and m + 1 along the signal and the disentropy of
autocorrelation by comparing the signal with a delayed version
of itself using autocorrelation.

IV. SOME PRNGS

A. Linear congruential generator (LCG)

This generator produces a sequence of pseudo-randomised
numbers based on linear recursions given by [34], [35]:.

xk+1 = axk + c mod M (22)

xk being the sequence with k ∈ N, M > 0 is the modulo,
x0 ∈ [0,M [the seed, a ∈ [0,M [the multiplier and c ∈
[0,M [the increment, such that x0, a, c ∈ ZM [35]. This
generator is a common and old method to make a PRNG. The
linear method with c = 0 has been developed in 1951 by D.H.
Lehmer [36] and the linear congruential generator in 1958 by
W. E. Thomson and A. Rotenberg [37].

In this study, we use Lehmer generators and linear congru-
ential generators with parameters shown in Table I. Lehmer
suggested to have M as a Mersenne-prime number such that
M = 2p − 1 with p a prime number. Note also that the seed
x0 should be a co-prime of M , henceforth we chose x0 = 1.
To obtain PRNGs of good quality, some parameters in Table I
have been chosen to match the parameters of commonly used
random functions as the C++11 minstd_rand function or
the GNU C Library rand function [35].

This way of generating PRNGs allows us to create non-
optimised PRNGs or bad PRNGs by changing the parameters
a, M , and c. These PRNGs presented in Table I (LCG Bad,
LCG 1, 2, 3, 4) will therefore be compared to the optimised
ones using the metric presented earlier. The parameters of
LCG 1, 2, 3 and 4 have been chosen in order to observe pat-
terns in their output visually, while still exhibiting randomness
as represented on Fig. 1c.

5

Fig. 1. Examples of normalised PRNGs output for 10000 samples (a) MT0 (b) Bad LCG (c) LCG 2.

The parameters of LCG Bad have been chosen to create
a bad PRNG with poor complexity exhibiting periodicity as
illustrated on Fig. 1b.
In this study, the output of all LCGs will be normalised
between 0 and 1.

TABLE I
PARAMETERS OF LEHMER AND LINEAR CONGRUENTIAL GENERATORS.

PRNG M a c

Minimal standard
generator [34]

231 − 1 16807 0

C++11
minstd_rand

231 − 1 48271 0

GNU C Library
rand

231 1103515245 12345

LCG Bad 5000 17 256

LCG 1 220 1487 25436

LCG 2 220 1487 25236

LCG 3 220 1487 25336

LCG 4 219 1487 25336

B. Mersenne-Twister PRNG

The Mersenne-Twister (MT) algorithm [38] is a common
tool to generate sequences of random numbers. For example,
it is used in python random module [39] and MATLAB™
rand function [40]. Furthermore, the MT algorithm can
be used as a base for cryptographic cyphers, for example
CryptMT [41], or image watermarking techniques [42]. MT
uses the twisted generalized feedback back shift register
(TGFSR) algorithm developed in [43]. The MT19937 algo-
rithm described in [38] has a remarkably large prime period
M = 219937 − 1 making it a good PRNG.
In this work, the MT19937 algorithm in MATLAB™ rand
function will be used with seed 0 and a randomly picked
seed i.e., S = 1773456103, two PRNGs which will be called
MT0 and MTS , respectively. Now that we have defined which
PRNGs are going to be used in this study, we can apply to
them the various metrics discussed so far.

V. PRNGS RESULTS

A. Analog signals

For the ApEn metric, we utilised the MATLAB™
approximateEntropy function [44]. It is recommended
to use the ApEn algorithm with m = 2 or m = 3 as well as r
between 0.1σ0 and 0.2σ0 [24], [30]. Therefore, we took m = 2
and m = 3, and the approximateEntropy function uses
r = 0.2σ0.

For the FuzEn metric, we used the algorithm provided in
[32] with a Gaussian membership function as recommended
for long signals for a faster computation time. We also took
m = 2 and m = 3 as well as and r = 0.1253σ0 as
recommended in the algorithm.

A sweep in m from m = 2 to m = 8 has been performed
for ApEn and FuzEn, results are shown in Appendix A and
confirm the choice of m = 2 and m = 3.

To compute the autocorrelation function we used the
MATLAB™ autocorr function [45] for each lag (delays)
from lag = 0 (no delay) to lag = length(s)− 1.
Next, the disentropy of the autocorrelation function (D2) is
obtained using Eq. 21 by summing for each lag value.

Recall here that D2 can be positive or negative with an ideal
value at D2 = 0.5 in the absence of patterns in the signal [17].
Therefore, we decided to focus on D = |D2 − 0.5| to better
appreciate the variations around 0.

To know how many samples are needed to perform the
analysis, a convergence study has been conducted with MT0

and m = 2. Results for ApEn and FuzEn are shown in Fig. 2.
With the parameters defined previously, ApEn needs more than
1000 samples to converge. The dependency of ApEn on the
number of samples was expected as discussed in Section III-A.
FuzEn converges faster than ApEn, but still needs at least
1000 samples to reduce the standard deviation to an order of
magnitude of 10−2. On the other hand, the disentropy tends to
0 after few oscillations; for 1000 samples its standard deviation
is ∼ 10−3 in order of magnitude.

In the next studies, we chose to take a number of samples
N = 10000 to make sure that both ApEn and FuzEn
have enough samples to converge and have a small standard
deviation.

6

Fig. 2. Convergence study of ApEn and FuzEn for MT0 and m = 2.

After 10000 samples, the order of magnitude of the vari-
ations for ApEn and FuzEn was 10−3, and 10−4 for the
disentropy. Hence, we generated outputs of 10000 samples
for each PRNG. For example, the output of MT0, LCG Bad,
and LCG 2 are presented on Fig. 1.

We observe that the output of MT0 does not exhibit observ-
able patterns. On the other hand, LCG Bad has clear repeating
patters and should have a very low score for all the metrics.
LCG 2 does not necessarily have repeating patterns. However,
straight lines translated on the y-axis can be observed for LCG
2 in its output.

Then, we decided to test different PRNGs for the different
metrics and compared their results to the scores obtained by
MT0 (for each respective metric) presented in Tab. II.

TABLE II
MT0 SCORES FOR ANALOG SIGNALS

D0 ApEn0 FuzEn0
4.80 · 10−5 m = 2 2.156 2.040

m = 3 1.848 1.926

Results are shown on Fig. 3. All metrics were clearly able
to distinguish the repeating patterns of LCG Bad, but in order
to have a proper visibility of the other PRNGs results, it was
decided to remove its scores from Fig. 3. However, results
from LCG Bad are presented in the Appendix B.

As expected, we observe that the different good or well-
known PRNGs (MTS , MSG, GNU C, C++) obtain good scores
for all metrics, close to those of MT0 with D ∼ 10−4. How-
ever, only the disentropy is capable of clearly distinguishing
between these known PRNGs and LCG 1, 3 and 4. FuzEn
even perceives them as better PRNGs. However, one observes
that LCG 2 obtains good results for the disentropy and the
best score for ApEn and FuzEn with m = 3. This means that
D, ApEn and FuzEn are not capable of perceiving the lines
observed for LCG 2 in Fig. 1(c). Besides, it can be also seen
that m = 3 obtains better contrast than m = 2 for ApEn and
FuzEn.

By looking at Eq. (20) and Eq. (21), it is possible to deduce
that the score obtained by the disentropy will depend highly on
the number of samples if the pattern repeats itself periodically.
Indeed, if one defines T as the period of the pattern, and τp
a point in the periodic pattern, then rτp = rτp+T > 0. Hence,
the contribution of the periodic pattern will be added each time
it is observed. This behavior has been verified with LCG Bad
that repeats itself every 500 samples. Fig. 4 shows that the
disentropy score is small for a small number of samples i.e.,
below 500. However, above 500 samples the metric begins to
analyze redundancies and the score D = |D2 − 0.5| grows
linearly with the number of samples due to the increase of
autocorrelation functions r500j with j ∈ N∗.

Fig. 4. Evolution of LCG Bad disentropy with N .

Fig. 3. Score ratio of PRNGs obtained from (a) D = |D2 − 0.5|, (b) ApEn, and (c) FuzEn compared to MT0 scores for analog signals of Table. II.

7

B. Binary signals

Since Eq. (1) and Eq. (2) are also defined for binary signals
we want to test how the disentropy behaves in that case.

By placing a comparator at 0.5 on the PRNGs output of
section V-A we converted these analog signals into binary
ones. For binary signals the NIST test suite manual [6]
recommend to have m < ⌊log2(N)⌋−5. With N = 10000 this
condition becomes m < 8, hence we decided to compute the
entropies with m ∈ [2, 8] with the last point m = 8 included.
We decided to do the same analysis as in Fig. 3 by comparing
the PRNG scores to the MT0 scores shown in Tab. III.

TABLE III
MT0 SCORES FOR BINARY SIGNALS.

D0 ApEn0 FuzEn0
2.63 · 10−4 m = 2 0.6930 0.6932

m = 3 0.6929 0.6935

m = 8 0.6798 0.6931

First, one observes that ApEn0 and FuzEn0 scores decrease
from values close to 2 in Tab. II to values close to log(2) ≈
0.6931. In fact, the highest ApEn value for binary signals is
known to be equal to log(2) [30].

As in the analog case, all metrics were able to discriminate
LCG Bad; its scores are presented in the Appendix B.

Results for the other PRNGs are presented in Fig. 5 where
we observe that only the disentropy is capable to distinguish
between the well-known PRNGs and LCG 1, 2, 3 and 4.
In Fig. 5(a) and Fig. 5(b) we decided to represent m = 2
and m = 3 because they were the inner dimensions used
in Section V-A and m = 8 because it exhibited the highest
contrast between the PRNGs. The well-known PRNGs still
obtain results close to D0 ∼ 10−4. On the other hand, ApEn
and FuzEn are only capable to discriminate LCG Bad and
LCG 1. By increasing m further both are more and more
discriminated, but all the other PRNGs obtain scores around
log(2).

It is possible to obtain a p-value from ApEn in the NIST
test suite to discriminate between random and non-random
binary series; if p > 0.01 the series is considered random [6].
Therefore, the ApEn algorithm from [46] has been used.

This algorithm obtains results for m = 2, 3 and 8 similar to
the MATLAB™ approximateEntropy function. In terms
of p-values, only LCG Bad is considered as non-random
except for m = 8 where LCG 1 obtains p = 0.0096 and
is therefore near the limit.
Here, the disentropy of autocorrelation outperformed ApEn
and FuzEn and, this time, it is capable of discriminating LCG
2 from the other good PRNGs with one order of magnitude
difference.

VI. PUFS

A. Deterministic patterns

In this section we initially consider series of analog signals
that are not experimental data generated by PUFs.

First, we generate the responses with the MT algorithm,
then we insert patterns inside and, finally, we test them.

We generated the responses Ri of n = 128 samples as
if they were responses coming from an analog PUF to be
converted in binary. As a reference, 100 different responses
with the MATLAB™ rand function were taken, then we
concatenated them to obtain a series C0 of size N = 12800.
As no patterns are present in the responses, the concatenation
C0 should obtain a good score. Besides, we generated 128-
sample-long responses with rand, but this time we added the
conditions presented in Algorithm 2.

Algorithm 2 Deterministic dynamics algorithm.
for k ∈ [2, n] do

if s(k − 1) ≥ 0.9 then
s(k)← 0.1

else if s(k − 1) ≤ 0.1 then
s(k)← 0.9

end if
end for

By doing so, we insert two patterns in the responses of the
PUF with a probability of p = 0.1 each. This simulates a PUF
with a certain deterministic dynamics. These responses will
be the test responses and will be compared to the reference
ones for each metrics. This study has been performed 100
times as if it was 100 different PUF instances and obtained
the concatenations Ci with i ∈ [1, 100].
For each Ci we compute the metrics for m = 1, 2 and 3.
We decided to use m = 1 because the patterns implied two
samples. Therefore, ApEn and FuzEn might perform better
with m+ 1 = 2 considering Algorithm 1.

TABLE IV
AVERAGE METRIC SCORE RATIO OF Ci FOR THE REFERENCE AND TEST

RESPONSES.

D ApEn FuzEn

+27742% m = 1 −15% −26%

m = 2 −20% −16%

m = 3 −12% −19%

In Table IV, we observe that all the metrics were able
to differentiate between the reference and the test responses.
However, for the test responses, the D scores increased by
∼ 102, while ApEn and FuzEn only decreased by ∼ 10−1 as
order of magnitude.

It is possible to analyse the responses individually by
removing the concatenation step. In that case, the metrics
are applied on series of 128 samples making it more difficult
to differentiate between the reference responses and the test
responses. The study has been performed with 500 responses
to have enough data for the mean values of the metrics to
converge. Between the reference and the test signals, the
mean value of D over all responses increased by 331%.
FuzEn(m = 1) and FuzEn(m = 3) decreased by 25% and
20%, respectively and ApEn(m = 1) decreased by 13%, while
ApEn(m = 3) increased by 62%.

8

Fig. 5. Score ratio of PRNGs obtained from (a) D = |D2 − 0.5| (b) ApEn (c) FuzEn compared to MT0 scores for binary signals of Table. III.

Note that ApEn(m = 3) gives a wrong result in that case,
in fact its mean value should decrease as ApEn(m = 1) and
FuzEn. This error is probably due to shortness of the responses
that hinders ApEn to give meaningful results as the pattern is
too short to be observed with m = 3.

Now we consider 100 instances of a PUF that has a defect
where some samples will always be equal. For example, one
can set the value of the first sample, forcing it to be equal to
0.5. In that case, no metrics are able to differentiate between
the reference and the test concatenations. If we force the first
two response samples to be equal to 0.2 and 0.1 respectively,
the [0.2, 0.1] pattern will repeat itself every 128 bits. The
tests are performed with different number of responses Nresp.
Intuitively, by increasing the number of responses, we increase
the length of the concatenation and number of repeating
patterns inside. Results are presented in Tab. V. We decided
to give 0% for differences lower than 1% and smaller than the
standard deviation of signals.

TABLE V
AVERAGE SCORE RATIO BETWEEN REFERENCE CONCATENATIONS AND
TEST CONCATENATION OF RESPONSES WITH THE [0.2, 0.1] PATTERN.

Metrics Nresp = 100 Nresp = 200 Nresp = 500

D 0% +719% +4930%

ApEn(m = 1) 0% −0.3% −0.3%

FuzEn(m = 1) −0.5% −0.5% −0.5%

ApEn(m = 2) 0% −0.3% −0.3%

FuzEn(m = 2) −0.4% −0.3% −0.3%

ApEn(m = 3) 0% −0.2% −0.2%

FuzEn(m = 3) 0% −0.3% −0.3%

For Nresp = 100, we observe that only FuzEn is capable
of detecting the pattern with a very small contrast of 0.5% for
m = 1 and 0.4% for m = 2. However, by increasing the num-
ber of responses, and therefore by increasing the number of
patterns present in the signal, the disentropy contrast increases
drastically, while the FuzEn and ApEn contrast remains very
small for all m.

B. Test on PUFs responses
Here, we use the simulated outputs of a photonic PUFs

previously published [9]. Different PUF architectures were

reported and here we focus our discussion on the architectures
PUF 1 and PUF 3 because of their different NIST ApEn [46]
scores. In this paper, the binary challenges are created using
the MT algorithm and 150 instances of each architecture are
simulated with fabrication variations. For each instance 100 re-
sponses of 128 bits are generated and have been concatenated
for the NIST tests evaluation. Their results are compared in
Table VI with N%

ApEn the percentage of instances passing the
ApEn test [46].

TABLE VI
RESULTS SUMMARY OF PUF 1 AND PUF 3 ARCHITECTURES.

PUF 1 PUF 3

N%
ApEn 1-7% 46%

Uniqueness High Low

Impact on challenges High Low

For two different binary conversion schemes, PUF 1 obtains
low N%

ApEn compared to PUF 3 despite the bias in PUF 3
responses due to the conversion to a binary format. PUF 1
can operate effectively on the challenges to generate unique
instances because of its fabrication variations and architecture.
It also degrades the quality of the challenges generated using
the MT algorithm, while PUF 3 is not complex enough to have
an impact on the challenges.

Given that N%
ApEn(PUF 1) < N%

ApEn(PUF 3) in the binary
domain, one expects D(PUF 1) > D(PUF 3) in the analog
domain as well. For the 150 instances we indeed obtain
D(PUF 1) ∼ 10−2 and D(PUF 3) ∼ 10−4.

Moreover, with a number of samples in the same order of
magnitude N = 100 × 128 ∼ 104 we expected D(PUF 3) to
be close to D(MT0) ∼ 10−4 of Fig. 3(a).

Also, as shown in Fig. 3(a), the score D(PUF 1) ∼ 10−2 has
the same order of magnitude as D of LCG 1, 3 and 4 exhibiting
patterns. This indicates the presence of patterns in the analog
PUF 1 responses and show that the low N%

ApEn(PUF 1) is not
entirely caused by a bad binary conversion scheme or the bias
in the responses.

On the ApEn and FuzEn side, we discovered that the
responses of PUF 3 obtained a score very close to log(2) for
both metrics. This means that ApEn and FuzEn are seeing the
responses of PUF 3 as signals close to binary data.

9

As shown in Fig. 6, the normalised responses of PUF 3
are closely oscillating between two levels: 0 and 1 due to
the low impact that the PUF 3 architecture has on the binary
challenges. Therefore, ApEn(PUF 1) > ApEn(PUF 3) and
FuzEn(PUF 1) > FuzEn(PUF 3) even if PUF 1 has patterns
and N%

ApEn(PUF 1) < N%
ApEn(PUF 3).

Fig. 6. First analog response of PUF 3 first instance (normalised).

Hence, one should be careful while using ApEn and FuzEn
on analog signals if they oscillate between two levels. As
we observed on Fig 3(a) and Fig. 5(a), the disentropy is not
highly affected by the transformation from analog to binary
signal (c.f the well-known PRNGs and LCG Bad results).
As mentioned in [30], the ApEn algorithm gives a relative
value allowing to compare signals using the same “alphabet”.
Therefore, depending on the application, this characteristic of
ApEn and FuzEn to be sensitive to the type of signals can
make a comparison between analog signals complicated.

One could argue that a binary signal is less complex than an
analog signal with a very large number of levels. However, for
security applications where the signal has to be converted into
binary data, the detection of patterns and correlations in the
signal is more important than the complexity in terms of levels
and the instability of ApEn and FuzEn can be detrimental in
this regard.

VII. CONCLUSION

In this study we were able to show that the disentropy of
autocorrelation is an interesting metric to assess the complex-
ity of security primitives outputs, both in the analog as well
as in the binary domain. The disentropy is able to differentiate
between well-known and optimized PRNGs and ones of lower
quality with a greater contrast than ApEn and FuzEn. It can
also be used to detect patterns in the responses of PUFs.
However, the score given by the disentropy depends highly
on the length of the signal. Therefore, we recommend using it
with a comparison. We suggest to compare the score obtained
by the signal under test alongside a signal of the same length
generated with the MT0 algorithm.

Furthermore, the disentropy does not need inputs whereas
ApEn and FuzEn results depend highly on their input param-
eters such as the inner dimension m. In addition, ApEn and
FuzEn depend on the type of the input signal s; with the

chosen m and r we observed that the ideal value for ApEn and
FuzEn is close to 2 for analog signals and log(2) for binary
ones or analog signals with a small amount of levels. On the
other hand, the results obtained from the disentropy do not
suffer from this characteristic since it only detects the amount
of correlation in signals making it more interesting to use for
signals that have to be converted into binary data.

APPENDIX A
INFLUENCE OF m ON APEN AND FUZEN SCORES FOR

ANALOG SIGNALS

To confirm the choice of m = 2 and m = 3 for ApEn
and FuzEn we decided to conduct a study of the influence of
m in the ApEn and FuzEn scores. As shown in Fig. 7 and
Fig. 8, with m = 1 we cannot differentiate between MT0 and
LCG Bad. Using m = 2 we obtain a high score for MT0 as
expected, but a small contrast compared to LCG Bad. m = 3,
seems to be the best candidate since it has the largest contrast
between the two PRNGs while giving a high score for MT0.
For m > 3, the contrast decreases and ApEn gets close to 0
for MT0.

Fig. 7. MT0 ApEn and FuzEn score evolution with m for analog signals.

Fig. 8. LCG Bad ApEn and FuzEn score evolution with m for analog signals.

10

APPENDIX B
LCG BAD SCORES

The scores obtained by LCG Bad are hard to represent
in Fig. 3 and Fig. 5 without losing visibility for the other
PRNGs. Therefore, its results are presented in Tab. VII for
analog signals and in Tab. VIII for binary signals.

TABLE VII
LCG BAD SCORES FOR ANALOG SIGNALS.

D ApEn FuzEn

2.51 m = 2 1.939 1.241

m = 3 0 0.398

TABLE VIII
LCG BAD SCORES FOR BINARY SIGNALS.

D ApEn FuzEn

2.60 m = 2 0.692 0.690

m = 3 0.685 0.677

m = 8 0.367 0.381

ACKNOWLEDGMENTS

The authors would like to thank R. V. Ramos for the helpful
and interesting discussion on disentropy and Stefano Giordano
for useful feedback.

REFERENCES

[1] R. Maes, Physically Unclonable Functions:Constructions, Properties and
Applications.

[2] A. Babaei and G. Schiele, Physical Unclonable Functions in the Internet
of Things: State of the Art and Open Challenges, Sensors, vol. 19, no.
14, p. 3208, Jul. 2019, doi: 10.3390/s19143208.

[3] F. Pavanello, I. O’Connor, U. Ruhrmair, A. C. Foster, and D. Syvridis,
Recent Advances in Photonic Physical Unclonable Functions, in 2021
IEEE European Test Symposium (ETS), Bruges, Belgium: IEEE, May
2021, pp. 1–10. doi: 10.1109/ETS50041.2021.9465434.

[4] A. Maiti, V. Gunreddy, and P. Schaumont, A Systematic Method to Eval-
uate and Compare the Performance of Physical Unclonable Functions, in
Embedded Systems Design with FPGAs, P. Athanas, D. Pnevmatikatos,
and N. Sklavos, Eds., New York, NY: Springer New York, 2013, pp.
245–267. doi: 10.1007/978-1-4614-1362-2 11.

[5] M. Al-Haidary and Q. Nasir, Physically Unclonable Functions
(PUFs): A Systematic Literature Review, in 2019 Advances in Sci-
ence and Engineering Technology International Conferences (ASET),
Dubai, United Arab Emirates: IEEE, Mar. 2019, pp. 1–6. doi:
10.1109/ICASET.2019.8714431.

[6] A. Rukhin et al., A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications.

[7] C. Marchand, L. Bossuet, U. Mureddu, N. Bochard, A. Cherkaoui, and V.
Fischer, Implementation and Characterization of a Physical Unclonable
Function for IoT: A Case Study With the TERO-PUF, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 1, pp. 97–109,
Jan. 2018, doi: 10.1109/TCAD.2017.2702607.

[8] B. T. Bosworth et al., Unclonable photonic keys hardened against
machine learning attacks, APL Photonics, vol. 5, no. 1, p. 010803, Jan.
2020, doi: 10.1063/1.5100178.

[9] P. Jimenez et al., Photonic Physical Unclonable Function Based on
Symmetric Microring Resonator Arrays, Oct. 2023, doi: 10.5281/ZEN-
ODO.8436663.

[10] D. Dermanis, A. Bogris, P. Rizomiliotis, and C. Mesaritakis, Photonic
Physical Unclonable Function Based on Integrated Neuromorphic De-
vices, J. Lightwave Technol., vol. 40, no. 22, pp. 7333–7341, Nov. 2022,
doi: 10.1109/JLT.2022.3200307.

[11] F. B. Tarik, A. Famili, Y. Lao, and J. D. Ryckman, Scalable and CMOS
compatible silicon photonic physical unclonable functions for supply
chain assurance, Sci Rep, vol. 12, no. 1, p. 15653, Sep. 2022, doi:
10.1038/s41598-022-19796-z.

[12] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Physical One-Way
Functions, Science, vol. 297, no. 5589, pp. 2026–2030, Sep. 2002, doi:
10.1126/science.1074376.

[13] U. Rührmair, C. Hilgers, S. Urban, A. Weiershäuser, E. Dinter, B.
Forster, and C. Jirauschek (2013). Optical pufs reloaded. Cryptology
ePrint Archive.

[14] C. E. Shannon, A mathematical theory of communication, in The Bell
System Technical Journal, vol. 27, no. 3, pp. 379-423, July 1948, doi:
10.1002/j.1538-7305.1948.tb01338.x.

[15] R. V. Ramos, Quantum and Classical Information Theory with Disen-
tropy.

[16] G. S. Castro and R. V. Ramos, Enhancing eavesdropping detection in
quantum key distribution using disentropy measure of randomness, Quan-
tum Inf Process, vol. 21, no. 2, p. 79, Feb. 2022, doi: 10.1007/s11128-
022-03422-y.

[17] R. V. Ramos, Estimation of the Randomness of Continuous and Discrete
Signals Using the Disentropy of the Autocorrelation, SN COMPUT. SCI.,
vol. 2, no. 4, p. 254, Jul. 2021, doi: 10.1007/s42979-021-00666-w.

[18] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J Stat
Phys, vol. 52, no. 1–2, pp. 479–487, Jul. 1988, doi: 10.1007/BF01016429.

[19] Tsallis, C. (1994). What are the numbers that experiments provide.
Quimica Nova, 17(6), 468-471.

[20] G. B. Da Silva and R. V. Ramos, The Lambert–Tsallis Wq function,
Physica A: Statistical Mechanics and its Applications, vol. 525, pp.
164–170, Jul. 2019, doi: 10.1016/j.physa.2019.03.046.

[21] R. V. Ramos, Disentropy of the Wigner function, J. Opt. Soc. Am. B,
vol. 36, no. 8, p. 2244, Aug. 2019, doi: 10.1364/JOSAB.36.002244.

[22] M. Garcia-Bosque, A. Perez-Resa, C. Sanchez-Azqueta, C. Aldea,
and S. Celma, Chaos-Based Bitwise Dynamical Pseudorandom Number
Generator On FPGA, IEEE Trans. Instrum. Meas., vol. 68, no. 1, pp.
291–293, Jan. 2019, doi: 10.1109/TIM.2018.2877859.

[23] A. Cherkaoui, L. Bossuet, and C. Marchand, Design, Evaluation, and
Optimization of Physical Unclonable Functions Based on Transient Effect
Ring Oscillators, IEEE Trans.Inform.Forensic Secur., vol. 11, no. 6, pp.
1291–1305, Jun. 2016, doi: 10.1109/TIFS.2016.2524666.

[24] S. M. Pincus, Approximate entropy as a measure of system complexity.,
Proc. Natl. Acad. Sci. U.S.A., vol. 88, no. 6, pp. 2297–2301, Mar. 1991,
doi: 10.1073/pnas.88.6.2297.

[25] A. Holzinger et al., On Applying Approximate Entropy to ECG Signals
for Knowledge Discovery on the Example of Big Sensor Data, in Active
Media Technology, vol. 7669, R. Huang, A. A. Ghorbani, G. Pasi, T.
Yamaguchi, N. Y. Yen, and B. Jin, Eds., in Lecture Notes in Computer
Science, vol. 7669. , Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 646–657. doi: 10.1007/978-3-642-35236-2 64.

[26] R. K. Udhayakumar, C. Karmakar, P. Li, and M. Palaniswami, Effect of
embedding dimension on complexity measures in identifying Arrhythmia,
in 2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Orlando, FL, USA: IEEE,
Aug. 2016, pp. 6230–6233. doi: 10.1109/EMBC.2016.7592152.

[27] W. Chen, Z. Wang, H. Xie, and W. Yu, Characterization of Sur-
face EMG Signal Based on Fuzzy Entropy, IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 15, no. 2, pp. 266–272, Jun. 2007, doi:
10.1109/TNSRE.2007.897025.

[28] A. Delgado-Bonal, A. Marshak, Y. Yang, and D. Holdaway, Analyzing
changes in the complexity of climate in the last four decades using
MERRA-2 radiation data, Sci Rep, vol. 10, no. 1, p. 922, Jan. 2020,
doi: 10.1038/s41598-020-57917-8.

[29] A. Delgado-Bonal, Quantifying the randomness of the stock markets,
Sci Rep, vol. 9, no. 1, p. 12761, Sep. 2019, doi: 10.1038/s41598-019-
49320-9.

[30] A. Delgado-Bonal and A. Marshak, Approximate Entropy and Sample
Entropy: A Comprehensive Tutorial, Entropy, vol. 21, no. 6, p. 541, May
2019, doi: 10.3390/e21060541.

[31] J. S. Richman and J. R. Moorman, Physiological time-series analy-
sis using approximate entropy and sample entropy, American Journal
of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp.
H2039–H2049, Jun. 2000, doi: 10.1152/ajpheart.2000.278.6.H2039.

[32] H. Azami, P. Li, S. E. Arnold, J. Escudero, and A. Humeau-Heurtier,
Fuzzy Entropy Metrics for the Analysis of Biomedical Signals: Assessment
and Comparison, IEEE Access, vol. 7, pp. 104833–104847, 2019, doi:
10.1109/ACCESS.2019.2930625.

[33] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8, no. 3, pp.
338–353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X.

11

[34] S. K. Park and K. W. Miller, RANDOM NUMBER GENERATORS:
GOOD ONES ARE HARD TO FIND, vol. 31, no. 10, 1988.

[35] K. Bhattacharjee and S. Das, A search for good pseudo-random number
generators: Survey and empirical studies, Computer Science Review, vol.
45, p. 100471, Aug. 2022, doi: 10.1016/j.cosrev.2022.100471.

[36] D. H. Lehmer, Mathematical models in large-scale computing units,
Ann. Comput. Lab.(Harvard University), vol. 26, pp. 141–146, 1951.

[37] W. E. Thomson, A modified congruence method of generating pseudo-
random numbers, The Computer Journal, vol. 1, no. 2, pp. 83–83, 1958.

[38] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Trans.
Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan. 1998, doi:
10.1145/272991.272995.

[39] random — Generate pseudo-random numbers, Python documentation.
Accessed: Jan. 05, 2024. [Online]. Available: https://docs.python.org/3/
library/random.html

[40] Control random number generator - MATLAB rng - MathWorks France.
Accessed: Jan. 05, 2024. [Online]. Available: https://fr.mathworks.com/
help/matlab/ref/rng.html

[41] M. Matsumoto, T. Nishimura, M. Hagita, and M. Saito, CRYPTO-
GRAPHIC MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CI-
PHER.

[42] K. L. Prasad, T. Ch. M. Rao, and V. Kannan, A Hybrid Semi-fragile
Image Watermarking Technique Using SVD-BND Scheme for Tampering
Detection with Dual Authentication, in 2016 IEEE 6th International
Conference on Advanced Computing (IACC), Bhimavaram, India: IEEE,
Feb. 2016, pp. 517–523. doi: 10.1109/IACC.2016.102.

[43] M. Matsumoto and Y. Kurita, Twisted GFSR generators, ACM Trans.
Model. Comput. Simul., vol. 2, no. 3, pp. 179–194, Jul. 1992, doi:
10.1145/146382.146383.

[44] Measure of regularity of nonlinear time series - MATLAB
approximateEntropy - MathWorks France. Accessed: Jan. 05, 2024.
[Online]. Available: https://fr.mathworks.com/help/predmaint/ref/
approximateentropy.html

[45] Sample autocorrelation - MATLAB autocorr - MathWorks France.
Accessed: Jan. 05, 2024. [Online]. Available: https://fr.mathworks.com/
help/econ/autocorr.html

[46] GitHub, NIST Randomness Testsuit, https://github.com/stevenang/
randomness testsuite

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://fr.mathworks.com/help/matlab/ref/rng.html
https://fr.mathworks.com/help/matlab/ref/rng.html
https://fr.mathworks.com/help/predmaint/ref/approximateentropy.html
https://fr.mathworks.com/help/predmaint/ref/approximateentropy.html
https://fr.mathworks.com/help/econ/autocorr.html
https://fr.mathworks.com/help/econ/autocorr.html
https://github.com/stevenang/randomness_testsuite
https://github.com/stevenang/randomness_testsuite

	Introduction
	The Disentropy of the Autocorrelation Function
	The autocorrelation function
	The construction of disentropy

	Other measures of complexity
	The Approximate Entropy
	The Fuzzy Entropy

	Some PRNGs
	Linear congruential generator (LCG)
	Mersenne-Twister PRNG

	PRNGs Results
	Analog signals
	Binary signals

	PUFs
	Deterministic patterns
	Test on PUFs responses

	Conclusion
	Appendix A: Influence of m on ApEn and FuzEn scores for analog signals
	Appendix B: LCG Bad scores
	References

