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Abstract

In this report, we document WP5’s progress in the first half of the project. WP5 develops tech-
niques to make LLLMs confidence-aware, explainable and robust (e.g., to noisy or out-of-domain
input), the work is divided in three tasks, each covering one of these themes. The first half of the
project saw considerable progress along all three tasks with outputs in the form of peer-reviewed
publications, public code and data, as well as co-organisation of events. We did not face nor do we
foresee any noteworthy risk, and expect steady progress in the second half of the project.
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1 Introduction

WPS5 is focused on developing reliable and trustworthy underlying ML components for the core
language technologies developed within UTTER, these components account for three themes:

e Uncertainty representation and estimation techniques for confidence-aware, self-critical Al
assistants;

e Methods for explanation and attribution generation across domains and applications;

e Strategies to enhance robustness to noisy input.

These correspond to our three tasks, which we cover in detail in sections 2, 3, and 4.

Summary of Output

Manuscripts: 1 journal article (TACL23), 14 conference papers (EMNLP22, ACL23, EACL23,
EAMT23, EMNLP23, EACL24, ICLR24), 2 workshop papers (CVPR23, EACL24), and 3
arXiv pre-prints.

Code and data:

https://github.com/evgeniael/predict_next_word
https://github.com/dmg-illc/nlg-uncertainty-probes
https://github.com/Vicky-Wil/MONITOR

https://github.com/Vicky-Wil/ReMaKE
https://github.com/deep-spin/uncertainties_ MT _eval
https://github.com/Kaleidophon/non-exchangeable-conformal-language-generation
https://github.com/deep-spin/non-exchangeable-crc
https://github.com/AngelosNal/Vision-DiffMask
https://github.com/deep-spin/crest/

https://github.com/Unbabel/ COMET/tree/explainable-metrics
https://huggingface.co/collections/Unbabel/xcomet-659eca973b3be2ae4ac023bb
https://github.com/deep-spin/hallucinations-in-nmt
https://github.com/deep-spin/ot-hallucination-detection
https://github.com/deep-spin/Imt_hallucinations
https://github.com/deep-spin/translation-hypothesis-ensembling
https://github.com/deep-spin/robust_ MT _evaluation

Events: 1 workshop (UncertaiNLP) at EACL24.
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2 Task 5.1: Uncertainty-aware generation and conversational QE (UVA*,
IT, UEDIN, UNB)

Proposal

The key highlights from the proposal are listed below.

5.1a uncertainty-awareness: UTTER’s systems should be “aware” of their own limitations
(e.g., in order to adequately handle ambiguous or out-of-domain inputs).

5.1b interpretable uncertainty: for smooth interactions with system users, we will develop
and test methods to express uncertainty in a human-readable and verifiable fashion.

Summary of completed work

The original plan was to work on this task from the beginning of the project till month 24. In-
deed, the first half of the project saw considerable progress along the two dimensions above (i.e.,
uncertainty-awareness and interpretable uncertainty).

Since the initial proposal, this task saw no decrease in relevance, on the contrary, uncertainty-aware
methods are growing in importance and popularity (see Figure 1).! Next, we report on our progress

Data from ACL anthology

2010
2011
2012
2013
2014 Figure 1: The plot shows the increase in number of abstracts
I .
2812 S (from the ACL anthology https://aclanthology.org)
§2017 I including an uncertainty-related keyword. Image
2018 from the 1st Workshop on Uncertainty-Aware NLP
- (UncertaiNLP; Véazquez et al., 2024), which UT-
2021 TER co-organised and supported.
2022
2023
2024
0 2 4 6 8 10

Percentage of abstracts including one of our keywc

in the first 18 months of the project. Our contributions to this task are organised under 4 sub-
themes: statistical evaluation of text generators (5.1a), improved text generation (5.1a), assessing
and editing the parametric knowledge of language models (5.1a), and interpretable uncertainty
quantification (5.1b). We contributed methodology, data, software and empirical observations that
advance the state-of-the-art.

1Uncertainty-related keywords: uncertainty, variability, variation, aleatoric, epistemic, evidential, confidence, dis-
agreement, multiple perspectives, multiple judgements, multiple annotation, multiple annotators, multiple references,
active learning, calibration, conformal prediction, probabilistic inference, approximate inference, Bayesian inference,
BSL, Bayesian DL, Bayesian deep learning, BNN, Bayesian neural net, sampling, decision-making, utility-aware,
controllable generation, selective prediction, selective generation, statistical evaluation.
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2.1 Statistical Evaluation of Natural Language Generators

Natural language generators are built upon probabilistic models which inherently pack a highly
structured representation of uncertainty about responses given a prompt. The next three pieces of
work advance statistical evaluation of these objects, which is a crucial ingredient in diagnosing and
driving progress. These contributions advance sub-goal 5.1a (uncertainty-awareness).

2.1.1 Interpreting Predictive Probabilities: Model Confidence or Human Label Vari-
ation?

In common language, uncertainty refers to “a state of not being definitely known or perfectly clear;
a state of doubt”.? In statistics and machine learning, uncertainty is taken as a state to be repres-
ented (Lindley, 2013; Halpern, 2017)—the state of the world as a function of inherently stochastic
experiments or the state of knowledge of an agent observing or interacting with the world—and its
mathematical representation requires prescribing a probability measure (Kolmogorov, 1960). In
modern NLP, neural networks are the de-facto standard to predict complex probability measures
from available context (Goldberg and Hirst, 2017): given an input (or prompt), a neural network
prescribes a representation of uncertainty over the space of responses (e.g., strings or classes),
typically, by mapping the input to the parameter of a probability mass function (e.g., in text classi-
fication, inputs are mapped to the probability masses of each outcome in the label space).

Recently, transformer-based large language models (LLMs) are becoming increasingly powerful
and display remarkable abilities on complex classification tasks, leading to an increased deploy-
ment in user-facing applications. This motivates the need for models that can signal when they are
likely to be wrong (an aspect of trustworthiness), and models that can capture different linguistic
and human interpretations (an aspect of language including fairness). We identify two perspectives
in the literature whereby the exact same representation of uncertainty—the predictive distribution
over outcomes—is sometimes interpreted as an indication of confidence in model predictions (P1;
Desai and Durrett, 2020; Dan and Roth, 2021; Jiang et al., 2021) and other times as an indication
of variation in human perspectives (P2; Plank, 2022).

Our position paper (Baan et al., 2024) provides clarity and accelerates progress by:

o Identifying these two perspectives on the predictive distribution and examining how each
evaluates the quality of predictive distribution.

e Documenting their merits and limitations, and relating them to popular notions of aleatoric
and epistemic uncertainty.

e Taking the position that both perspectives contribute to trustworthy and fair NLP systems, but
that exploiting a single predictive distribution is limiting, and highlighting exciting directions
towards models that can predict distributions over human or linguistic interpretations, and
simultaneously abstain from answering when lacking such knowledge or skills.

This work is reported in (Baan et al., 2024).

2 Oxford English Dictionary, accessed October 13th 2023.
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Figure 2: Estimated human and model distributions for two example contexts (15 most probable words
of each distribution).

2.1.2 Predict the Next Word: (Humans exhibit uncertainty in this task and language

Autoregressive LMs are trained to assign probability to the next token conditional on a context.
Their conditional predictive distributions can be viewed as a representation of uncertainty of hu-
man production variability — specifically, one that reflects the production variability of the popu-
lation that generated their training data. Despite how natural plausible variability is, LMs are not
consistently subjected to such variability during their training. This led us to question and hence
investigate their ability to predict it well.

In order to assess whether a language model can serve as a good proxy to the production variability
humans exhibit, we exploit the following desideratum, previously termed as calibration to human
uncertainty (Baan et al., 2022) in the context of text classification: a language model should assign
probability to any next word candidate similar to the proportion of humans assigning that word as
the next one. We are able to appreciate production variability in humans, by providing a group of
humans with a context and asking each of them to provide which word they think follows. We can
prompt the model we’d like to assess using the same context and sample word continuations. Using
the human and model samples, we obtain Monte Carlo estimates of the conditional probability
distributions over word continuations given a prefix (see Figure 2 for some examples); which we
can compare using Total Variation Distance (TVD). For the purposes of our analysis, we use Provo
Corpus (Luke and Christianson, 2018), a dataset of around 2.6k contexts with, on average, 40
human word continuations per context. We assess three pre-trained LMs (GPT2 (Radford et al.,
2019), Bloom (Scao et al., 2022), ChatGPT (OpenAl, 2022)) representative of different model
sizes and training objectives. We assess them by plotting distribution of TVD values across all
contexts and computing the average TVD. Our contributions can be summarised as follows:

e We introduce a technique to assess model’s calibration against human uncertainty, our tech-
nique does not require open-access to the model (that is, it is sufficient to have access to an
inference-only API) and is applicable regardless of tokenisation strategy.

e The models we analysed do not reliably reproduce the range of variability recorded in
Provos.

e We analyse potential predictors of this inability and find that models particularly struggle
when predicting words following contexts that allow for higher plausible variability.
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. Semantic variability
Dialogue context

It's very dark in here. Will you turn on the light? ~ °°
Okay. But our baby has fallen asleep. 03
Then, turn on the lamp, please. 0.4
But where's the switch? 03
Humans o2
* Don't you know where the switch is? o1

* Switch is on the left side of the lamp. 0050 025 050 075 1.00

D » Just press the second switch on the board. Cosine distance

* Lamp is upon the study table and now you know where the switch is.
* I will light up the torch, so you can find the switch and turn on the lamp.

DialoGPT-medium, nucleus p =0.9

* You don't have one. «I'm sorry.
* Where's the button? * On my chest
«It’s on the top. *I'mon it!
» Well, you'll want to turn it on. * Turning on the switch
* Turn it on. I have a few, try and figure it out.

Figure 3: Production variability observed in 5 human responses vs 10 responses generated by
DialoGPT. The graph presents the distribution of pairwise cosine distances: generated
responses exhibit higher semantic variability than human responses. The generator’s
semantic uncertainty is too high in this dialogue context.

We believe that models explicitly supervised with variability, might be able to better capture human
production variability, which we leave as future work.

This work is reported in (Ilia and Aziz, 2024).

2.1.3 What Comes Next? Evaluating Uncertainty in Neural Text Generators Against
Human Production Variability

Humans display great variability in language production, in particular when the context or the task
are open-ended, such as in storytelling or in dialogue. Given a story prompt, for example, there are
many plausible ways in which different humans (or a single writer, if asked multiple times) may
tell the story (Fan et al., 2018). We refer to this phenomenon as production variability. Produc-
tion variability in humans has two main sources. First, when situated in a context, speakers may
entertain variable communicative goals (Searle, 1969; Sacks et al., 1974; Austin, 1975), and the
number and variety of plausible communicative goals depends on the production task (Jokinen,
1996). Translation, for instance, defines the communicative goal almost unequivocally while a
dialogue context might allow for a wide variety of communicative goals (expressed, e.g., as a re-
quest, an assertion, or a yes-no question). The second source of variability is the fact that even
when context and communicative goal are fixed, speakers’ linguistic realisations of the commu-
nicative goal may vary (Levelt, 1993). Both sources of variability apply to individuals as well as
to populations: if an expert is asked to simplify a complicated sentence multiple times, they may
perform different rewriting transformations (e.g., paraphrasing, reordering, or sentence splitting)
and produce different texts (Alva-Manchego et al., 2021); the same is true if multiple experts are
asked to perform a task (Xu et al., 2015). If we are to regard a Natural Language Generation (NLG)
system (or text generator) as a good model of human production, it should capture the variability
observed in humans.

Text generators combine two mechanisms: (i) an underlying statistical model—typically, an autore-
gressive factorisation of the probability of sequences, with conditional token probabilities predicted
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by a neural network; and (i1) an iterative decoding algorithm that chains samples from next token
distributions into a complete production. Together these two mechanisms specify a probability
distribution over sequences of tokens, which can be regarded as a representation of the model’s
uncertainty about productions for a given generation context. In this work, we assess whether this
representation of uncertainty is in compliance with production variability exhibited by a population
of humans—which in turn, we argue, can be regarded as an expression of aleatoric uncertainty,
i.e., irreducible uncertainty due to the stochastic nature of the data generating process (Der Kiur-
eghian and Ditlevsen, 2009; Hiillermeier and Waegeman, 2021). In other words, we compare the
distribution over productions of a text generator against the distribution over the productions of a
population of human speakers, given the same context (see Figure 3 for an overview).

Quantifying the closeness in distribution between a text generator and a human population is dif-
ficult: we only have an iterative view into the generator’s distribution; the ‘human distribution’
is an implicit or even hypothetical object; and in both cases, the sample space is large or even
unbounded. We can, however, compare these two objects via the samples they produce and assess
their statistical distance—which is what we propose here. For each individual generation context,
we compare scalar properties of generations (through repeated model sampling) and human pro-
ductions (using multi-reference NLG datasets). In particular, we probe for lexical, syntactic, and
semantic distance between productions, thus allowing for a quantitative and interpretable assess-
ment of uncertainty.

Our contributions are summarised as follows:

e We find that the uncertainty of neural text generators is higher than justified by human pro-
duction variability in open-ended tasks, like story generation and open-domain dialogue;
and that it is lower on more constrained tasks, like machine translation and text simplifica-
tion (see Figure 4).

e Popular decoding algorithms, which bias away from the distribution of the generator’s under-
lying statistical model (e.g., top-k, top-p, or locally typical, rather than ancestral sampling),
have a limited impact on the generator’s ability to faithfully represent human variability.

e We complement our quantitative assessments with a detailed analysis of individual gener-
ation contexts, which sheds light on whether a generator has robustly learned to reproduce
degrees and aspects of human variability plausible for the communicative task.

Beyond the experimental results obtained on our selection of models and tasks, our work has im-
portant implications for NLG evaluation and data collection. Multiple samples and, when possible,
multiple references, should be used to assess the statistical fit of text generators. Our approach,
complementary to other types of automatic evaluation, makes model assessments particularly in-
sightful and trustworthy because it does not judge a model only by a single output but also, intuit-
ively, by what it could have generated—and it does so for each individual input in the test set. We
therefore hope our framework will be used by the community as an evaluation criterion for NLG
systems, especially to assess them in more open-ended tasks.

This work is reported in (Giulianelli et al., 2023).
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2.2 Improved Text Generation (Decoding)

Text generation is performed by combining a probabilistic model of responses given a prompt,
and a decision rule (or decoder), that is, an algorithm that explores the probability distribution and
elects an output to show to the user. In the next two pieces of work, we advance such decoders:
we discuss the limits of existing explanations for certain degeneracies common in text generation
and contribute a new hypothesis, and combine the uncertainty representation by different models
into an improved contrastive decoder. These contributions advance sub-goal 5.1a (uncertainty-
awareness).

2.2.1 The Effect of Generalisation on the Inadequacy of the Mode

The highest probability sequences of most natural language generation models tend to be degen-
erate in some way, a problem known as the inadequacy of the mode (Eikema and Aziz, 2020).
While many approaches to tackling particular aspects of the problem exist, such as dealing with
too short sequences (Wu et al., 2016) or excessive repetitions (Xu et al., 2022), explanations of
why it occurs in the first place are rarer and do not agree with each other (Meister et al., 2022;
Yoshida et al., 2023). We challenge the existing hypotheses, arguing they paint an incomplete pic-
ture and bring light to the role that generalisation may play in causing the inadequacy of the mode.
We argue that in order to generalise well, a neural network needs to map different local contexts
to similar continuous representations. As a result, their observations jointly contribute to the same
next-word distributions. We hypothesise that this clustering is not always due to actual linguistic
equivalence, i.e. human continuations for those contexts may distribute differently. As a result,
the introduced spread may lead to inadequate modes for some contexts, which may also result in
inadequate modes when compounded to the sequence-level distributions. Therefore, we argue that
inadequate modes in natural language generation models may be an inevitable consequence of our
desire to generalise to unseen contexts under the current modelling and data constraints.

This work is reported in (Eikema, 2024).
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2.2.2 Contrastive Decoding Reduces Hallucinations in Large Multilingual Machine Trans-
lation Models

Hallucinations are a rare but problematic phenomenon in NMT (Neural Machine Translation)
whereby the target side output is repetitive or fluent but not grounded in the source sentence (Ji
et al., 2023). Even though hallucinations are rare in NMT, they are a significant problem as they
undermine trust in deployed NMT systems. Hallucinations occur when the target side sentence
is detached from the source side sentence (Wang and Sennrich, 2020; Dale et al., 2023), or in
other words, when there is a low contribution of the source sentence to the generation of the target
sentence.

Previous work on mitigating hallucinations has focused on sampling translations and reranking
them according to quality metrics (Dale et al., 2023; Guerreiro et al., 2023e). Separate to this,
Li et al. (2022) proposed Contrastive Decoding (CD) as a way of mitigating bad behaviour (such
as excessive repetition and low diversity) when generating from unconditional language models.
CD is a decoding algorithm that maximises the difference between the log probabilities of a strong
expert and a weak amateur model (equivalent to maximising the ratio of probabilities). A threshold
is applied so that decoding follows the expert when it is more confident. The intuition behind CD is
that the amateur model is more prone to certain types of low-quality generation, so by subtracting
the log probabilities, these are removed. We hypothesise that by using CD with an amateur, which
is prone to source detachment, we can mitigate hallucinations in NMT.

In order to create an amateur with low source attachment, we experiment with different strategies
for reducing the role of cross-attention. The simplest is the no-encoder strategy, where the amateur
is a decoder-only version of the expert. In our other strategies, we retain the encoder and cross-
attention but impose uniform attention, remove attention from the most highly attended source
position, or scale down all cross-attention values.

In contrast to unconditional generation, NMT should be more strictly grounded in the source sen-
tence. Additionally, hallucinations only account for a small proportion of translations, and hence,
mitigation of hallucinations must not come at the cost of reduced performance on other sentences.
As such, increasing the diversity of the translations is less desirable than it is in unconditional gen-
eration. Ideally, CD would only take effect when a model is hallucinating. To address this issue,
we experiment with a novel variant of CD that dynamically adjusts the subtraction’s magnitude
based on a distribution’s maximum value.

We evaluate our approach on large multilingual models, which have recently been shown to be
prone to hallucinations (Guerreiro et al., 2023a). Specifically, we use the M2M family of models
(Fan et al., 2020) and consider the 418M (Small) and 1.2B (Medium) versions.

We summarise our contributions as follows:

e We show that using CD in conjunction with amateur models that have reduced source con-
tributions mitigates hallucinations.

e We extend the CD algorithm, dynamically setting the weight given to the amateur to limit
the effect of CD when the expert is confident.

e We evaluate across 21 language pairs using the M2M family of models on the FLorEs-101
dataset, reporting a mean increase of 14.6+0.5 and 11.0+0.6 COMET on sentences causing
hallucinations for the Small model and Medium models respectively.
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This work is reported in (Waldendorf et al., 2024).

2.3 Assessing and Editing What Models ‘Know’

Because LLMs are unlike a typical data base, if they store any facts observed during pretraining,
these ought to be stored in the LLM’s parametric memory. Storage and retrieval of these facts are
trainable parametric mechanisms that remain mostly opaque to practitioners and researchers alike.
In the next two pieces of work, we develop data and methodology to assess the parametric memory
of LLLMs as well as to edit this memory in order to fix incorrectly stored facts. These contributions
advance sub-goal 5.1a (uncertainty-awareness).

2.3.1 Assessing the Reliability of Large Language Model Knowledge

Recently, large pre-trained language models (LLMs) have been used as de facto storage for factual
knowledge (Petroni et al., 2019). However, applying LLMs to real-world scenarios inevitably
leads to language generation deviating from known facts (aka “factual hallucination” (Chang et al.,
2023)) due to multiple causes. For example, Cao et al. (2021a) argued that the performance of an
LLM is over-estimated due to biased prompts over-fitting datasets (also referred to as the framing
effect in Jones and Steinhardt (2022)) and in-context information leakage. Given the variability of
LLMs’ performance under different prompts and contexts, it becomes evident that relying solely
on accuracy as an evaluation metric is insufficient. We also need to gauge how robust LLLMs are to
variations in prompting.

In short, we identify two issues with the evaluation of factual knowledge in LLMs using accuracy:

Prompt framing effect: An LLM generates different predictions depending on how prompts are
framed. Predictions are associated with prompts instead of factual knowledge learned in LLMs.
Effect of in-context interference: An LLM leverages in-context information during its decoding
stage, but this information may negatively affect an LLM’s prediction during knowledge probing.
In other words, a model may be influenced to give an incorrect response by information in its
context.

We argue that a metric of factual accuracy for LLMs should take into account not just top-1 per-
formance, but should consider the probability that the model assigns to the correct answer. The
metric should also consider how the model responds under a variety of prompts. To address these
we propose a novel distance-based approach MOdel kNowledge rellabiliTy scORe (MONITOR)
which captures the deviation of output probability distributions under contexts of prompting vari-
ance, interference from mispriming (Kassner and Schiitze, 2020) and positively-primed prompts.
MONITOR is designed to compute the distance between the probability distributions of a valid
output and its counterparts produced by the same LLM probing the same fact using different styles
of prompts and contexts. Experiments on a comprehensive range of 12 LLMs demonstrate the
effectiveness of MONITOR in evaluating the factual reliability of LLMs while maintaining a low
computational overhead.

The contributions of this work are:

1. We propose a novel method to assess the factual reliability of LLMs in the presence of the
prompt framing effect and in-context interference. The proposed metric, MONITOR, can be
used in conjunction with an end-to-end metric (i.e., accuracy) as part of a multi-dimensional
approach to LLM knowledge evaluation.
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2. We construct the FKTC (Factual Knowledge Test Corpus) by developing question answer-
ing probing prompts (210,171 prompts in total) based on 16,167 triplets of 20 fact datasets
from T-REx corpus (Elsahar et al., 2018). We will release FKTC to the public to foster
research works along this line.

This work is reported in (Wang et al., 2023c).

2.3.2 Retrieval-augmented Multilingual Knowledge Editing

Large Language Models (LLMs) are being used as sources of factual knowledge for search engines
and other downstream tasks. Despite their considerable progress, knowledge generated by LLMs
can be incorrect or become obsolete in a changing world. Pre-training from scratch or fine-tuning
LLM:s to adapt them to new knowledge is computationally expensive and not guaranteed to work.
Knowledge editing (KE) methods (Zhu et al., 2020; Cao et al., 2021b) have been proposed as
effective and economic alternatives to fine-tuning when specific factual knowledge needs to be
added or updated. KE involves either updating the parameters of a model (Dai et al., 2022a;
Mitchell et al., 2022a; Meng et al., 2022, 2023; Dai et al., 2022b) or adding extra components to
an LLM (Mitchell et al., 2022b; Zheng et al., 2023). For example, KE can be used to correct the
answer to this question “Who is the foreign secretary of the UK?” from “James Cleverly” (true
until mid November 2023) to “David Cameron”, who has recently been appointed to the post.

Despite significant interest in this problem, current research on KE predominantly concentrates
on a monolingual setting, where both the injected knowledge and the subsequent queries to the
LLM are in English (Mitchell et al., 2022a; Meng et al., 2022, 2023; Mitchell et al., 2022b; Zheng
et al., 2023). Companies serving a multilingual customer base need to consider the multilingual
KE case, where KE is done in one language and this propagates to queries and answers in all other
languages. While Wang et al. (2023a) explored the cross-lingual applicability of knowledge editing
to the English-Chinese cross-lingual scenario, their primary focus was to highlight the challenges
rather than develop a functional KE approach in a multilingual setting.

Who is the foreign secretary of the UK? David
Cameron

Multilingual ¢Quién es el secretario de relaciones exteriores
Yser Query K g del Reino Unido?
¢Quién es el secretario de relaciones exteriores del Retriever
\
v
\
\

Reino Unido? Qual cidade é a capital da Franga?
(Who is the foreign secretary of the United
Kingdom?)

Semantic
Space

Qual cidade é a capital da Franca?
(Which city is the capital of France?)

Edited Knowledge

Who is the foreign secretary of the UK? David
Cameron

Quelle entreprise a créé ChatGPT? OpenAl
Erkekler Kriket Diinya Kupasi 2023'ii hangi iilke
kazandi? Avustralya
FHTRBR T AT P EBMET? g

Figure 5: ReMaKE attaches in-context knowledge to an LLM prompt when it is retrieved (red example
where the edited knowledge is in English and a user query is in Spanish) from a customer-
defined multilingual knowledge base. When no edited knowledge is retrieved (green ex-
ample) the prompt is passed to the LLM unchanged.
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Drawing inspiration from in-context learning (ICL), in-context knowledge editing (IKE) uses
prompts to edit factual knowledge. It is noted that IKE is so far the only method demonstrating
positive results in the cross-lingual KE task setting (Wang et al., 2023a). However, IKE requires
explicit provision of new knowledge every time an LLM is used, confining its practicality and
scalability in real-world applications. In addition, IKE suffers when irrelevant facts are included
in the prompt (Wang et al., 2023c) especially in scenarios where a substantial number of facts are
being edited.

In this paper, we propose Retrieval-Augmented Multilingual Knowledge Editor (ReMaKE)
that integrates multilingual retrieval from a knowledge base with in-context learning. ReMaKE
concatenates the retrieved knowledge from an external database with a user query to create the
prompt. The proposed multilingual retriever grounds the ReMaKE to the retrieved accurate and
up-to-date information highly relevant to user queries, therefore effectively mitigating the contex-
tual interference due to irrelevant context. In this way, the generated prompts are able to guide the
LLM:s in producing accurate responses associated with the injected knowledge. ReMaKE lever-
ages a knowledge base’s ability to scale to further enhance IKE’s knowledge editing performance
in real-world application scenarios where large volumes of edits are in scope. Figure 5 shows the
architecture of the proposed retrieval-augmented multilingual knowledge editor. Our main contri-
butions are listed below:

e Multilingual knowledge editing: ReMaKE extends the scope of knowledge editing prac-
tices across language boundaries. Given that the multilingual knowledge base and multilin-
gual retriever operate independently to a specific LLM, ReMaKE is a plug-and-play tool
applicable to any LLM. It is scalable, capable of editing a large number of knowledge.
Experiments show ReMaKE outperforms baseline methods by a significant margin in the
average accuracy score (up to +40.53%).

e Multilingual editing dataset: We build a machine-translated multilingual knowledge edit-
ing dataset (MzsRE) in 12 languages: English, Czech, German, Dutch, Spanish, French,
Portuguese, Russian, Thai, Turkish, Vietnamese, and Chinese using the zsRE testset (Levy
et al., 2017). The dataset will be made available to the community.

This work is reported in (Wang et al., 2023b).

2.4 Interpretable Uncertainty Quantification

Uncertainty is typically represented by a probability distribution, with probability functioning as a
mechanism to order events from most to least uncertain. Probability is, however, not always easy
for humans to interpret, and this is also true for other summaries of uncertainty based on probability
(e.g., entropy). In the next three pieces, we contribute towards more human interpretable forms of
uncertainty quantification, for example by disentangling uncertainty representations along aleatoric
and epistemic dimensions, and by creating so-called (conformal) prediction sets (roughly speaking,
a generalisation of confidence intervals that works in continuous and discrete spaces alike). These
contributions advance sub-goal 5.1b (interpretable uncertainty).
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2.4.1 Disentangling Uncertainty in Machine Translation Evaluation

In this work, we focus on uncertainty estimation over the predictions of machine translation (MT)
evaluation metrics. We were specifically interested in departing from previous work (Glushkova
et al., 2021), that explored sampling-based methods for uncertainty quantification such as Monte
Carlo dropout and deep ensembles and exploring powerful uncertainty quantification methods that
can differentiate between aleatoric (data) and epistemic (model) uncertainties. We compare the
following methods:

1. Heteroscedastic Regression: This approach models aleatoric (data) uncertainty as observa-
tion noise, under the assumption that observed aleatoric uncertainty varies across instances,
influenced by factors such as noisy references or inconsistent human annotations. We thus
train a COMET Rei et al. (2020) model using heteroscedastic regression, to predict not only
a quality score for each instance but also a variance estimate o> for this score, serving as a
measure of aleatoric uncertainty.

2. Divergence Minimization: In this case, we leverage multiple annotations for each training
instance, using annotator disagreement as a proxy for data uncertainty. We then train a
model using a divergence minimization objective, specifically the Kullback-Leibler (KL)
divergence between the distribution of annotator scores and the predicted distribution of
quality scores.

3. Direct Uncertainty Prediction (DUP): Contrary to the methods focusing on aleatoric un-
certainty, DUP targets epistemic (model) uncertainty (e.g. uncertainty due to out-of-domain
data or unseen linguistic constructions). DUP, inspired by Jain et al. (2021) treats the total
uncertainty as an approximation of the model’s generalization error, directly learning to pre-
dict uncertainty based on observed prediction errors. Thus, we can train training a model
for DUP involves a two-step process: first, generating quality score predictions for a given
dataset using an initial model; and second, training a separate DUP model to predict the
uncertainty of these predictions by estimating the error between the predicted scores and the
true human judgments.

Our experiments demonstrate that the proposed methods significantly improve uncertainty predic-
tion in MT evaluation, obtaining better correlations with error on the WMT metrics task datasets,
as well as outperforming previous methods on a range of other performance indicators. More im-
portantly, we show that methods targeting different uncertainties can better address specific tasks.
As shown in Figure 6 heteroscedastic regression and divergence minimization approaches showed
a marked ability to capture aleatoric uncertainty, effectively identifying instances with low-quality
references. Instead, DUP proved more adept at reflecting increased uncertainty for out-of-domain
data, highlighting its potential for enhancing model reliability in diverse evaluation scenarios (see
Figure 7).

This work is reported in (Zerva et al., 2022).

2.4.2 Non-Exchangeable Conformal Language Generation with Nearest Neighbours

Extending our work on uncertainty we explored conformal prediction (Angelopoulos and Bates,
2021; Papadopoulos, 2008; Vovk et al., 2005), a framework that allows us to quantify the un-
certainty of predictions, under established statistical guarantees. It provides a way to generate
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prediction intervals (or sets) that come with a guarantee on coverage, i.e., the expectation that they
contain the true value with some probability, under the assumption that the data are exchangeable.
While it is an appealing framework, without the need for underlying assumptions on the data or
output distributions, the exchangeability assumption poses a challenge for sequence generation
tasks such as MT, since there is a dependency on previously generated tokens. As such, we turn
to extensions for non-exchangeable data, proposing novel frameworks for non-exchangeable con-
formal prediction and non-exchangeable conformal risk control that can be used for NLP tasks that
violate the exchangeability constraint.

We introduce a novel method based on non-exchangeable conformal prediction (Barber et al.,
2023) and to apply it to language generation to produce calibrated prediction sets. Our approach
leverages advancements in non-exchangeable conformal prediction to generate calibration sets dy-
namically during inference. We specifically propose to use a k nearest neighbours (KNN) method
to estimate the most relevant data points from the calibration set at each generation step. This al-
lows for token-level calibrated prediction sets that adapt to the current generation context without
necessitating additional model training.

Our method’s efficacy is validated across language modelling and machine translation tasks, demon-
strating its capability to produce tighter prediction sets with improved coverage compared to previ-
ous methods (Ravfogel et al., 2023). We show that using our estimated prediction sets for sampling
during generation (non-X conformal sampling), our approach maintains or even enhances gener-
ation quality, compared to commonly used sampling methods such as nucleus sampling or top-k
sampling. Furthermore, Figure 8 showcases our approach’s ability to maintain desired coverage
levels even under conditions of distributional shift, highlighting its robustness and adaptability.

Our findings underscore the potential of non-exchangeable conformal sampling to offer a theoret-
ically principled way to sample from language models with conformal guarantees. This provides
a more reliable and interpretable framework for evaluating and generating text across various ap-
plications.

This work is reported in (Ulmer et al., 2024).
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2.4.3 Non-Exchangeable Conformal Risk Control

The previously presented work accounts for setups where we are interested in calibrating with
respect to coverage but does not account for scenarios where we want to control for a different
function. This work extends lines of research in non-exchangeable conformal prediction and fo-
cuses on non-exchangeable conformal risk control (Non-X CRC). Our framework is designed to
control the expected value of any monotone loss function in scenarios where data exchangeability is
violated. This extension is crucial for real-world applications where data often exhibits sequential
dependencies (e.g. time series), change points, or other forms of distribution drift.

Non-X CRC is characterized by its flexibility and minimal assumptions. It allows for data weight-
ing based on relevance to a given test example, facilitating tighter bounds on expected loss. Our
empirical studies underscore the utility of non-X CRC across various tasks: multilabel classifica-
tion with synthetic data, monitoring electricity usage, and open-domain question answering. These
experiments highlight the method’s capability to minimize specific loss functions such as the false
negative rate and A-insensitive absolute loss, and to bound the best F1-score, showcasing its ver-
satility and effectiveness. A key finding is the adaptability of non-X CRC in maintaining calib-
rated prediction sets even under significant data distribution changes. For instance, our framework
demonstrated superior performance in adjusting to distribution drift and change points in synthetic
time series data, outperforming standard conformal risk control methods.

Specifically for the case of open-domain question answering, which is more relevant to the UT-
TER project, the task involves generating accurate answers to factoid questions based on a large
collection of documents. We controlled for the best token-based F1-score of the prediction set over
all pairs of predictions and answers. We employed dynamically computed weights determined by
the semantic similarity between the calibration questions and the test question.

The main findings from our experiments on the Natural Questions dataset highlight the efficacy
of non-X CRC compared to a CRC baseline as shown in Figure 9. Specifically, we observed that
while the overall test risk was comparable between our method and the standard CRC approach,
the prediction sets generated by non-X CRC were consistently smaller. This indicates that by
incorporating a nuanced weighting scheme based on semantic similarity, non-X CRC is able to
achieve the desired risk level with more concise and potentially more accurate prediction sets.
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Figure 9: F,-score control on the Natural Questions dataset. Average set size (left) and risk (right)
over 1000 independent random data splits.

These results underscore the potential of non-X CRC to enhance the precision and reliability of
open-domain QA systems, that can be extended to other NLP tasks and loss functions.

This work is reported in (Farinhas et al., 2024).

Plans for future work

This task remains very relevant for UTTER’s goals. In the second half of the project, we intend
to look into more ideas for tuning (e.g., fine tuning or instruction tuning) LLMs to better represent
uncertainty, to represent it and/or communicate it in human-readable ways, and to make better use
of this representation (e.g., in decoding, to detect or mitigate hallucinations, to deliver robustness
to noise and ambiguity, etc.). To reflect the growing impact of uncertainty in LLMs (from design
to application), unlike what we stated in the original plan, this task may extend until the end of the
project.

3 Task T5.2: Explainability (UVA*, IT)

Proposal

The key highlights from the proposal are listed below.

5.2a explaining predictions: trustworthy language technology should provide correct attribu-
tions and explanations of their output (e.g., meeting assistant should provide pointers into
specific timestamps or quotes from the meeting to justify action items).

5.2b transparent evaluation: besides explaining predictions of a trained model, we will adapt
models of quality estimation and machine translation evaluation making them more easily
amenable to human interpretation.

Summary of completed work

In the original plan, this task was scheduled to begin from month 12 and extend until the end of
the project. We decided to schedule it earlier, already from the beginning of the project. Indeed,
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the first half of the project has already seen considerable progress along the two dimensions above
(i.e., explaining predictions and transparent evaluation).

Next, we report on our progress in the first 18 months of the project. Our contributions are organ-
ised under 2 themes: explaining predictions (5.2a) and transparent evaluation (5.2b).

3.1 Explaining Predictions

Explaining predictions of a trained model is often done in terms of input attribution methods, in
the next two pieces we develop faithful attributions for vision Transformers and for explaining and
improving text generation. These contributions advance sub-goal 5.2a (explaining predictions).

3.1.1 Vision DirFMask: Interpretability of Computer Vision models with Differentiable
Patch Masking

Transformers (Vaswani et al., 2017) have led to various breakthroughs in NLP, but also, more
recently, in computer vision (CV) with the Vision Transformer (ViT; Dosovitskiy et al., 2021).
These models are able to extract complex features, which have pushed significant improvements
in performance on classic tasks (i.e., image classification) and opened the path to more complex
ones (e.g., image captioning and other multimodal applications). Despite their success, ViT, as any
other Transformer, is an opaque model component that lacks interpretability.

Vision Transformer on original image
Patch + Position

Input Embeddings Hidden States

Image

EH 50| | hO | — > pO B0 | . | a® YT'
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Gate ke[|l ¥]
Masked Vision Transformer on masked image
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Figure 10: Overview of Vision DiIFFMask’s architecture. Adapted from De Cao et al. (2020).

Explanations for Transformers typically come in the form of saliency maps over the input image,
and are often computed with gradient-based methods (Simonyan et al., 2014; Sundararajan et al.,
2017; Selvaraju et al., 2017) or attribution propagation methods Binder et al. (2016); Shrikumar
et al. (2017); Chefer et al. (2021). However, these approaches can not guarantee that (a) the model
is fully ignoring low-scored features, or (b) the model’s output distribution is preserved in their
absence. In our earlier work (De Cao et al., 2020) in NLP, we presented DirFM sk, a novel method
to predict attribution masks over the input text when conditioned on the hidden representations of
a language model. DirFFMAsKis a trainable probe, optimised to keep the minimal subset of the input
that produces a similar output distribution over the target labels.

We extend DirFeMask to the vision domain by introducing Vision DIFFMask, an interpretation net-
work that predicts saliency maps for models following the ViT’s architecture (see Figure 10). Our
method uses a gating mechanism on each of ViT’s layers. During training, all gates cast a binary
vote on whether to keep each of the input patches. The votes are aggregated across layers, through

page 22 of 47



UTTER HORIZON-CL4-2021-HUMAN-01-13 D19

element-wise multiplication, to obtain a single mask to apply at the input. During inference, each
gate predicts a probability instead of a binary vote, leading to an attribution map over the input.
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Figure 11: Empirical comparison of Vision DiFFMask, Attention Rollout and Grad-CAM on CIFAR-10.
The raw image is shown in the first row. Rows 2-4 correspond to the masked input, in
the case of Vision DiFFMask, or high-attribution patches for the other methods. Rows 5-7
overlay a heatmap over the original image based on attribution, with low scores depicted
in blue and high in red.
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Attribution methods cannot be evaluated simply by using human annotations, for that would meas-
ure the plausibility of the explanations according to humans, and not a faithful attribution accord-
ing to the model Jacovi and Goldberg (2020). Hence, we first test the faithfulness of our model
in a controlled scenario. Then, we evaluate our methodology using both qualitative and quant-
itative experiments against other state-of-the-art methods on CIFAR-10 (Krizhevsky, 2009). We
show that our method produces plausible outputs and provides valuable insights into the model’s
decision-making procedure (see Figure 11 for a sample of the results).

This work is reported in (Nalmpantis et al., 2023).

3.1.2 A Joint Framework for Rationalization and Counterfactual Text Generation

In this work, we introduced CREST, a framework that merges selective rationalization with coun-
terfactual text generation, enhancing the interpretability and robustness of NLP models. Our meth-
odology centres around two core components:

1. CREST-Generation: We propose a novel method for generating counterfactual examples,
which integrates sparse rationalization with span-level masked language modeling. This
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Figure 12: Overview of CREST-Rationalization.

approach yields counterfactuals that are not only valid and diverse but also maintain natural
fluency, addressing the common challenges of counterfactual generation.

2. CREST-Rationalization: Building upon the generated counterfactuals, we introduce a reg-
ularization technique that decomposes rationalization into factual and counterfactual flows.
This technique encourages consistency between rationales generated for both factual and
counterfactual inputs, fostering more interpretable and robust model predictions.

We demonstrated that CREST efficiently produces high-quality, natural counterfactual examples
and uses them to improve the quality and robustness of model rationales. Our findings indicate that
models trained with CREST-generated counterfactuals show notable improvements in handling
contrast and out-of-domain datasets. This work marks a significant step forward in combining
two complementary approaches to achieve greater model transparency and reliability, offering new
insights into the development of more interpretable and robust NLP systems.

We demonstrate the main components of the framework in Figure 12 and point the readers to our
EMNLP 2023 paper (Treviso et al., 2023).

3.2 Transparent Evaluation

Automatic evaluation protocols are powered by trainable metrics, often built upon blackbox com-
ponents such as pretrained LLMs. We contribute a novel paradigm for fine-grained evaluation
of MT, powering fine-grained insights into model performance, an analysis of blackbox neural
MT evaluation metrics, as well as a state-of-the-art approach for evaluation via fine-grained error
detection. These contributions advance sub-goal 5.2b (transparent evaluation).

3.2.1 Extrinsic Evaluation of Machine Translation Metrics

Although machine translation (MT) is typically seen as a standalone application, in recent years
MT models have been more frequently deployed as a component of a complex NLP platform
delivering multilingual capabilities such as cross-lingual information retrieval or automated multi-
lingual customer support. When an erroneous translation is generated by the MT systems, it may
add new errors in the task pipeline leading to task failure and poor user experience. For example,
consider the user’s request in Chinese &7 7 K MZEL?  (“Is there any good Jamaican food
in Cambridge?”’) machine-translated into English as “Does Cambridge have a good meal in Ja-
maica?”. The model will erroneously consider “Jamaica” as a location, instead of cuisine, and

page 24 of 47



UTTER HORIZON-CL4-2021-HUMAN-01-13 D19

prompt the search engine to look up restaurants in Jamaica. To avoid this breakdown, it is crucial
to detect an incorrect translation before it causes further errors in the task pipeline.

One way to approach this breakdown detection is using segment-level scores provided by MT
metrics. Recent MT metrics have demonstrated high correlation with human judgements at the
system level for some language pairs (Ma et al., 2019). These metrics are potentially capable of
identifying subtle differences between MT systems that emerge over a relatively large test corpus.
These metrics are also evaluated on respective correlation with human judgements at the segment
level, however, there is a considerable performance penalty (Ma et al., 2019; Freitag et al., 2021).
Segment-level evaluation of MT is indeed more difficult and even humans have low inter-annotator
agreement on this task (Popovié, 2021). Despite MT systems being a crucial intermediate step in
several applications, characterising the behaviour of these metrics under task-oriented evaluation
has not been explored. In this work, we provide a complementary evaluation of MT metrics. We
focus on the segment-level performance of metrics, and we evaluate their performance extrinsic-
ally, by correlating each with the outcome of downstream tasks with respective, reliable accuracy
metrics. We assume access to a parallel task-oriented dataset, a task-specific monolingual model,
and a translation model that can translate from the target language into the language of the mono-
lingual model. We consider the Translate-Test setting — where at test time, the examples from
the test language are translated to the task language for evaluation. We use the outcomes of this
extrinsic task to construct a breakdown detection benchmark for the metrics.

We use dialogue state tracking, semantic parsing, and extractive question answering as our extrinsic
tasks. We evaluate nine metrics consisting of string overlap metrics, embedding-based metrics,
and metrics trained using scores from human evaluation of MT. Surprisingly, we find our setup
challenging for all existing metrics; demonstrating poor capability in discerning good and bad
translations across tasks. We present a comprehensive analysis of the failure of the metrics through
quantitative and qualitative evaluation.

Our contributions are summarised as follows:

1. We derive a new breakdown detection task, for evaluating MT metrics, measuring how in-
dicative segment-level scores are for downstream performance of an extrinsic cross-lingual
task. We evaluate nine metrics on three extrinsic tasks covering 39 unique language pairs.

2. We show that segment-level scores, from these metrics, have minimal correlation with ex-
trinsic task performance. Our results indicate that these scores are uninformative at the
segment level — clearly demonstrating a serious deficiency in the best contemporary MT
metrics. In addition, we find variable task sensitivity to different MT errors .

3. We propose recommendations on developing MT metrics to produce useful segment-level
output by predicting labels instead of scores and suggest reusing existing post-editing data-
sets and explicit error annotations.

See Moghe et al. (2023) for further details.

3.2.2 The Inside Story: Towards Better Understanding of Machine Translation Neural
Evaluation Metrics

In this work, we investigate neural metrics for machine translation (MT) evaluation, such as
COMET, which have demonstrated superior correlation with human judgments over traditional
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metrics like BLEU. Despite their advancements, a considerable challenge remains with these
neural metrics due to their “black box” nature, offering minimal transparency into their decision-
making processes. Our research aims to develop and compare various neural explainability meth-
ods to shed light on the interpretive capabilities of state-of-the-art fine-tuned neural metrics, par-
ticularly focusing on how these metrics utilize token-level information to compute sentence-level
scores.

We evaluated two prominent neural metrics, COMET and UNITE, using a suite of attribution
and input attribution methods to generate token-level explanations. These explanations were then
analyzed in conjunction with human-annotated error spans from Multidimensional Quality Metrics
(MQM) annotations and synthetically generated critical translation errors. Our methodology is
grounded in the hypothesis that the neural metrics leverage token-level information, which can be
unveiled through our explainability techniques, such as:

e Embedding alignments: We measure the maximum cosine similarity between the embed-
dings of each translation token and the reference and/or source tokens (embed-align).

e Gradient-based: We calculate the £,-norm of gradients with respect to the word embeddings
of the translation tokens (grad¢,), aiming to identify the tokens that have the most significant
impact on the final score.

e Attention-based: These include the use of attention weights (attn) and attention weights
scaled by the £,-norm of the translation tokens (attnxgrad), these techniques aim to highlight
the importance of specific tokens based on the model’s attention mechanism.

Our findings reveal a close relationship between the quality of explanations and the metric’s ar-
chitecture. Notably, incorporating reference information significantly improves the quality of ex-
planations. Furthermore, our token-level explanations align with human-annotated error spans,
effectively identifying critical translation errors and highlighting potential weaknesses within the
metrics.

Our analysis underscores the impact of reference information in enhancing the explainability of
neural MT metrics. The experiments show that explanations for critical translation errors, such as
negations and hallucinations, can reveal potential shortcomings in these metrics. Specifically, we
find that neural metrics are adept at identifying and penalizing hallucinated translations, aligning
with the observed phenomena in critical error detection tasks.

For more information we direct readers to (Rei et al., 2023).

3.2.3 xCOMET: Transparent Machine Translation Evaluation through Fine-grained Er-
ror Detection

Following the previous insights regarding the quality predictions of COMET (see Section 3.2.2),
we further explored machine translation (MT) evaluation by integrating the strengths of traditional
sentence-level evaluation metrics and the granular error detection capabilities of generative large
language models (LLMs). We introduce xCOMET, a novel metric that is able to provide quality
estimates at sentence and word level that correlate well with human judgements while detecting
error spans within translations.
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Figure 13: The xCOMET framework illustrated through a real example: the metric not only provides
a sentence-level score but also predicts translation error spans along with their respective
severity. From these spans, we can infer MQMscore (following the MQM typology) that
informs and highly correlates with the sentence-level score. These spans complement the
sentence-level score by providing a detailed view into the translation errors.

Our proposed metric demonstrates high performance across several evaluation dimensions includ-
ing sentence-level, system-level, and error span prediction, setting a new standard in the field of
MT evaluation (this model won the competitive WMT23 Metrics Shared Task (Freitag et al., 2023)
beating submissions by Google and Microsoft). We further ensure its robustness to hallucinations
and detection of critical errors. In an effort to contribute to the broader research community and
foster further development in this area, we have publicly released two models of XCOMET, namely
xCOMET-XL and xCOMET-XXL.

The advent of XxCOMET marks a significant advancement for context-aware machine translation
by offering several key benefits. Firstly, the metric’s capability to highlight and categorize error
spans equips developers and researchers with the means to precisely pinpoint and address spe-
cific weaknesses in translation systems, facilitating targeted improvements. Secondly, XxCOMET’s
demonstrated robustness in accurately identifying a diverse array of errors, including the less com-
monly addressed hallucinations, ensures that evaluations provide a reliable measure of translation
quality across various scenarios. Lastly, by making our models available to the public, we aim
to encourage the adoption and iterative enhancement of xCOMET, promoting collaborative efforts
within the community to refine and advance MT evaluation methodologies.

We illustrate the XCOMET framework in Figure 13.
See Guerreiro et al. (2023d) for further details.

Plans for future work

This task remains important for UTTER’s goals and we plan to continue working on it in the
second half of the project. We expect more synergy between this task and T5.1, since interpretable
uncertainty quantification may well benefit from tools for model interpretation (e.g., input attribu-
tion).

page 27 of 47



UTTER HORIZON-CL4-2021-HUMAN-01-13 D19

4 Task T5.3: Robustness to noisy input (IT*, NAV, UNB)

Proposal

The key highlights from the proposal are listed below.

5.3a hallucinations: for reliable language systems, robustness to noise (e.g., typos, abbrevi-
ations and grammatical mistakes in text, background noise in the speech signal, and errors
caused by automatic speech recognition in pipeline systems) is required. Current translation
systems often hallucinate or produce critical errors in this regime.

5.3b robustness: we will investigate training and adaptation strategies to increase robustness.

Summary of completed work

The original plan was to work on this task from the beginning of the projet till month 24. In-
deed, the first half of the project saw considerable progress along the two dimensions above (e.g.,
hallucinations and robustness).

Next, we report on our progress in the first 18 months of the project. Our contributions are organ-
ised under 2 themes, one focused on 5.3a and one on 5.3b (with some natural overlap).

4.1 Hallucinations

Detecting and mitigating hallucinations are key elements in guaranteeing robustness of generation
models, and key desiderata for models that may be used for tasks such as real-time or high-risk
translation. In the next three pieces we contribute a comprehensive study of hallucinations, a cat-
egorisation of different types of hallucinations, as well as methodology and software for detection
and mitigation. These contributions advance sub-goal 5.3a (hallucinations).

4.1.1 A Comprehensive Study of Hallucinations in Neural Machine Translation

In this work, we set the foundation for the more systematic study of hallucinations in neural ma-
chine translation, addressing the challenge of detecting and understanding hallucinatory outputs
in translations. Our approach is distinguished by its focus on natural, in-domain data, free from
artificial perturbations either during training or inference. We annotate a dataset of over 3.4K
sentences, identifying different kinds of critical errors and hallucinations, and evaluate detection
methods, revisiting previously used methods and proposing the use of glass-box, uncertainty-based
detectors.

For hallucination detection, we cover previously proposed heuristic methods and also introduce
simple model uncertainty measures as detectors. Our analysis reveals that in preventive settings,
many previously used methods are largely inadequate, while standard sequence log-probability
emerges as the most effective, performing on par with reference-based methods. his approach
provided us with a multi-faceted view of the hallucination phenomenon in NMT systems (see also
Figure 14).

Our analytical efforts yielded several insights:
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Figure 14: Overall (left) and method-specific (right) statistics of human annotation results. Method-
specific statistics show the percentages of correct translations (grey), translation errors
(yellow) and hallucinations (red) among the examples flagged by each method.

e The prevalence of hallucinations in unperturbed, natural settings is substantiated, challen-
ging the necessity of artificial amplification used in earlier studies. This finding underscores
the inherent vulnerability of NMT systems to this pathological output.

e In the quest for effective hallucination detection, our evaluation revealed that previously
used methods fell short in accuracy and reliability. Surprisingly, sequence log-probability,
a relatively straightforward measure, emerged as the most effective detector, rivalling even
reference-based methods in performance.

e We introduced DEHALLUCINATOR, an innovative method designed to mitigate hallucin-
ations at test-time. This approach leverages a lightweight hallucination detector, followed
by a mechanism to replace flagged translations with more accurate alternatives. Our ex-
periments demonstrated a significant reduction in the rate of hallucinations, enhancing the
overall quality and reliability of NMT outputs.

This analysis not only advances our understanding of hallucinations in NMT but also sets a robust
foundation for future research in this area of study. More information is available at Guerreiro
et al. (2023e).

4.1.2 Optimal Transport for Unsupervised Hallucination Detection in Neural Machine
Translation

In this work, we tackled the problem of hallucination detection in neural machine translation from
a novel perspective. We argue that since hallucinations significantly diverge from the source con-
tent, they manifest distinct cross-attention patterns compared to non-hallucinatory, high-quality
translations. Leveraging the theoretical foundation of Optimal Transport (OT), we propose a fully
unsupervised, plug-in detector applicable to any attention-based NMT model, aiming to identify
translations with aberrant attention mass distributions.

We define the following scenarios for analysis:

1. Wass-to-Unif: Compares the source attention mass distribution of a given translation to a
uniform distribution, under the premise that hallucinatory outputs tend to exhibit abnormal
concentration on irrelevant tokens.
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Figure 15: Histogram scores for our methods — Wass-to-Unif (left), Wass-to-Data (center) and Wass-
Combo (right). We display Wass-to-Data and Wass-Combo scores on log-scale.

2. Wass-to-Data: Uses a data-driven reference distribution, comparing the source attention
mass distribution of a translation to those derived from a corpus of high-quality translations.
This method aims to contextualize the anomaly within a model’s typical distribution of at-
tention patterns.

3. Wass-Combo: We combine the two scores in two steps: (i) we start by assessing whether a
test sample is deemed a hallucination according to Wass-to-Unif, and if not (ii) we compute
the Wass-to-Data score

Our experimental evaluation, conducted across various datasets and language pairs, is summarised
in Figure 15 demonstrates that:

e The proposed OT-inspired hallucination detector significantly outperforms existing model-
based detectors in identifying hallucinatory translations.

e The detector proves competitive with existing external detectors that require auxiliary mod-
els trained on extensive datasets for related tasks, such as quality estimation and cross-lingual
sentence similarity.

e Our findings affirm the hypothesis that hallucinatory translations exhibit cross-attention pat-
terns that are statistically distinct from those of high-quality translations, validating the ef-
fectiveness of our OT-based anomaly detection approach.

Our study introduces a pioneering approach to hallucination detection in NMT, showcasing the
utility of optimal transport theory in analyzing the complex phenomena of hallucinations. By
establishing a method that does not rely on supervised learning or extensive auxiliary datasets,
we offer a scalable, efficient solution that enhances the robustness and trustworthiness of NMT
systems. This work paves the way for further exploration into unsupervised methods for ensuring
translation quality and model reliability.

This work is reported in (Guerreiro et al., 2023c).

4.1.3 Hallucinations in Large Multilingual Translation Models

In this work, we turn to large language models, motivated by the significant gap in understanding
how hallucinations manifest in multilingual models and their implications on translation quality,
especially beyond English-centric language pairs and in low-resource contexts. We specifically
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analyze hallucinations for both M2M neural machine translation (NMT) models and generative
pre-trained transformers (GPTs) across over 100 language pairs.

Our methodology encompasses a comprehensive evaluation framework that categorizes hallucin-
ations into two distinct types: hallucinations under perturbation and natural hallucinations. We
employ a range of artificial perturbations (e.g., misspellings, insertion of tokens, and capitalization
errors) to assess the robustness of translation models under manipulated conditions. Additionally,
we investigate natural hallucinations by examining the models’ output on unperturbed source texts,
focusing on their propensity to generate content unrelated to the source.

Our analysis employs several metrics, including spBLEU Goyal et al. (2022) for lexical similarity
and COMET variants for semantic evaluation Rei et al. (2022a,b), alongside sentence similarity
scores computed by LaBSE Feng et al. (2022).

Our findings reveal several insights into the behaviour of large multilingual MT models regarding
hallucinations:

e Hallucinations are more prevalent in low-resource language pairs and when translating out
of English, underscoring the challenge of maintaining translation quality in less-represented
languages.

e Distinctly, LLMs such as GPT exhibit qualitatively different hallucinations compared to con-
ventional NMT models, including off-target translations and overgeneration, suggesting dif-
fering underlying mechanisms of error generation.

e Smaller distilled models like SMalLL.100 demonstrate lower rates of hallucinations than their
larger counterparts, hinting at the potential benefits of model distillation in mitigating trans-
lation pathologies.

e Employing diverse models trained on different data or with varied procedures as fallback
systems can significantly improve translation quality and effectively mitigate certain patho-
logical outputs, demonstrating a promising approach for enhancing the robustness of MT
systems.

Our comprehensive analysis across diverse linguistic scenarios and model types sheds light on
hallucinations in machine translation. It highlights the critical need for robust mechanisms to detect
and mitigate hallucinations, especially in low-resource contexts beyond English-centric cases, to
ensure the reliability and safety of MT systems in real-world applications. More information is
available at Guerreiro et al. (2023a)

4.2 Robustness

In the next two pieces, we explore variants of system combination to improve robustness to noise
and out-of-domain inputs in decoding and in evaluation. These contributions advance sub-goal
5.2b (robustness).

4.2.1 Translation Hypothesis Ensembling with Large Language Models

Large language models (LLMs) are becoming a one-fits-many solution, but they sometimes hallu-
cinate or produce unreliable output (Guerreiro et al., 2023b). In this paper, we focus on the specific
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task of machine translation and investigate how hypothesis ensembling can improve the quality of
the generated text. We experiment with several techniques for ensembling hypotheses produced
by LLMs such as ChatGPT®, LLaMA (Touvron et al., 2023), and Alpaca (Taori et al., 2023),
providing a comprehensive study along multiple dimensions: the method to generate hypotheses
(multiple prompts, temperature-based sampling, and beam search) and the strategy to produce the
final translation (instruction-based, quality-based reranking (Fernandes et al., 2022), and minimum
Bayes risk (MBR) decoding (Eikema and Aziz, 2022)).

Our main findings can be summarized as follows. First, we demonstrate that translation qual-
ity can be enhanced with a small number of samples (e.g., 20), especially when translating out
of English. Notably, this differs from the findings of previous research using task-specific NMT
models (Fernandes et al., 2022; Freitag et al., 2022). Second, we discuss in which conditions
beam search remains a reliable baseline for single-hypothesis translation and how to ensemble
translations. Moreover, we find that there exists a significant gap in the quality of ensembles of
unbiased samples from LLaMA and Alpaca. We attribute this disparity to how instruction tun-
ing affects the relationship between the diversity of the hypotheses and the sampling temperature,
which ultimately impacts translation quality. Lastly, we show that hypothesis ensembling reduces
the number of generated hallucinations, thereby improving the model’s robustness to source per-
turbations. Ensembling predictions and increasing the model size narrows the quality gap between
open-source models and ChatGPT.

A full description of this work can be found in our paper (Farinhas et al., 2023).

4.2.2 Combining Lexical and Neural Metrics Towards Robust Machine Translation Eval-
uation

In this work, we explored methods to enhance the reliability of state-of-the-art machine translation
evaluation metrics. While neural-based metrics like COMET Rei et al. (2020) and BLEURT Sellam
et al. (2020) have shown strong correlations with human judgments, they struggle to detect critical
errors, such as deviations in entities and numbers. In contrast, traditional metrics like BLEU and
chrF, despite their lower correlations with human judgments, exhibit sensitivity to these deviations.
To address this, we examined various strategies for integrating both approaches. By incorporating
additional information, such as sentence-level features and word-level tags, during training, we
found that the metrics improved in penalizing translations with erroneous patterns of interest.

To be more specific, we considered a range of approaches leveraging interpretable string-based
metrics to fortify the robustness of contemporary neural-based metrics like COMET. These ap-
proaches include ensembling metrics, integrating sentence-level features, and leveraging word-
level information from TER-based alignmentsSnover et al. (2006). Notably, we discovered that
slight modifications to the COMET architecture, such as incorporating sentence-level features
based on BLEU and chrF scores or integrating word-level tags for the hypothesis, yielded compet-
itive performance enhancements. To validate the efficacy of our proposed methods, we conducted
evaluations on the latest MQM test set, covering diverse domains and language pairs, as well as
on challenge sets from the WMT 2022 Metrics shared task . Using these approaches resulted
in notable gains in correlation with human judgments, as well as promising performance on the
aforementioned challenge sets across multiple language pairs. The results were encouraging, un-
derscoring the potential of our approaches in advancing machine translation evaluation metrics.

3 https://chat.openai.com/
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Extending this work we are currently studying further the impact of using word-level tags of the
hypothesis in other ways not covered in this paper, e.g., by encoding this supplementary data as
word factors Niehues et al. (2016). The variety of the word-level tags potentially could also be
extended beyond binary quality tags to cover specific entities in text such as numbers and named
entities.

This work is reported in (Glushkova et al., 2023).

Plans for future work

This task remains very relevant for UTTER’s goals and we expect to continue working on it in the
second half of the project as originally planned. For the second half of the project, we plan to focus
more on speech.
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5 Conclusion

WP5 saw progress on all three tasks, we have contributed datasets, methodology, software and
empirical observations to advance various aspects of uncertainty-aware generation, explainability
and robustness. The first half of the project was focused on the text modality, hence we expect to
transfer some of this progress to speech in the second half. There are no relevant risks to be listed
for WP5, and we expect steady progress in the second half of the project.
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