Pulp and paper industry waste to fuel

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818011

PROJECT IDENTITY

- Funded by the EU H2020 under the call LC-SC3-RES-21-2018 - Development of next generation biofuels and alternative renewable fuel technologies for road transport (02/2018)
- 10 Partners from 4 countries
- Project duration: October 2018 September 2022
- **Budget**: 4.9 M€
- Coordinator CEA Geert HAARLEMMER

PARTNERS

BACKGROUND - CHALLENGES BIOFUELS

Biofuels promising but:

- Limitations in biomass availability
 - Quality issues
 - Wastes complex and diffuse
 - Residues
- Technological pathways to biofuels
 - Direct conversion (Pyrolysis and HTL) and upgrading
 - Gasification and synthesis
 - Biotechnology
 - Always complex
- Potential operators
 - Waste operators
 - Refiners
 - Pulp and Paper industry

TECHNOLOGICAL APPROACH & EXPECTED IMPACTS

- Integration of gasification & fuel synthesis technologies into the pulp industry
- Show how biofuels can be a side product of the paper industry => synergy with the existing process
- Show how with modern technologies the paper industry can deliver 2nd generation biofuels at a competitive cost
- Prepare the ground for a demonstration plant

5 AMBITIOUS SPECIFIC OBJECTIVES

- OBJ1: Improve the efficiency of the dry gasification process from **70** to **80** %
- OBJ2: Improve the carbon conversion of the wet gasification process to above 90 %
- OBJ3: Improve fuel synthesis to obtain carbon efficiencies **above 50 %** (state of the art 45%)
 -Reduce CO2 emissions fuel to 0.37 kg/L
 -Production 5 L biodiesel
- OBJ4: Integration of the full process and synergy between dry and wet gasification
- OBJ5: Show that biofuels can be produced under 1 €/L

PULP & PAPER INDUSTRY EXISTING PROCESS FOR WASTES VALORIZATION

 Manipulates large amounts of biomass
 Generates large residue streams (black liquor, bark, sludge, rejects from recycling)

Heat in excess

Material

Energy

Existing valorization:

THE PULP & FUEL CONCEPT

WORK DISTRIBUTION

CONCEPT & PROCESS SCHEME

DEVELOPED TECHNOLOGIES (1/4)

Gasification dry resources

Fixed bed gasification

- Work on more complicated new resources, bark
- Ash Management

Entrained flow gasification

 Injection of complex resources, bark and paper recycling waste

DEVELOPED TECHNOLOGIES (2/4)

Gasification wet resources

- Supercritical Water Gasification
 - In water
 - 300 bar
 - 700 °C

- Wet resources
 - Black Liquor
 - Deinking sludge

DEVELOPED TECHNOLOGIES (3/4)

Gas cleaning and Fuel Synthesis

- Development of gas cleaning adapted to capacity pulp plant.
 - Chemical looping

SINTEF

- Innovative concepts Fischer-Tropsch fuel synthesis
 - Exploiting the different quality synthesis gas streams.
 - Staged Fischer-Tropsch.
 - Adapted catalyst.

DEVELOPED TECHNOLOGIES (4/4)

Process design

- Full material and energy integration fuel synthesis with pulp plant.
- Show that there are no negative environmental impacts

THANK YOU FOR YOUR ATTENTION!

