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Document Abstract 
This report presents the development of a robust and efficient system architecture 
modeling and simulation infrastructure, aiming to facilitate the comprehensive 
evaluation of complete computing systems integrating neuromorphic accelerators and 
hardware security primitives of the NEUROPULS Horizon Europe project (Grant 
Agreement n° 101070238) along with electronic CPUs. The simulation infrastructure aims 
to enable detailed system-level evaluation, encompassing both software and hardware, 
to analyze the security properties of the computing platform incorporating photonic 
hardware primitives, and PCM (Phase-Change Memory) memory models (i.e., a type of 
non-volatile random-access memory).  

The first part of this report details the diverse objectives, including the creation of full 
system simulation tools, exploration of the design space for heterogeneous computing 
systems featuring photonic neuromorphic accelerators and hardware primitives next to 
the electronics processing elements, support for benchmarking activities in Use Cases, 
and the assessment of critical design parameters such as performance, power, 
resilience, and energy efficiency. The second part shows how the infrastructure enables 
detailed system-level evaluation, encompassing both software and hardware, to analyze 
the security properties of the computing platform incorporating photonic hardware 
primitives.  

This deliverable outlines the methodology, tools, and considerations involved in the 
establishment of the system architecture modeling and simulation infrastructure, 
highlighting its significance in advancing the understanding and optimization of 
computing systems. 
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1. Introduction 
In the ever-evolving landscape of computing systems, the integration of neuromorphic 
accelerators (or other domain-specific accelerators) and hardware security primitives 
represents a critical frontier. This deliverable introduces the first iteration of a 
comprehensive system architecture modeling and simulation infrastructure that will be 
developed in the context of the NEUROPULS project to meet the evolving demands of 
this paradigm and offer a framework for extensive design space exploration.  

The objectives of this endeavor are fourfold: (a) to create efficient full system simulation 
tools on top and around of the gem5 simulator [2] for modeling and evaluating complete 
computing systems with neuromorphic accelerators and security primitives, (b) to 
explore the diverse design space of heterogeneous computing systems employing 
photonic neuromorphic accelerators and hardware primitives, as developed and 
characterized in the physical design related Work Packages 2, 3, and 4, (c) to provide 
support for benchmarking activities within Work Package 6, focusing on Use Cases and 
benchmarks while assessing essential design parameters at the system scale, including 
performance, power efficiency and reliability, and (d) to facilitate detailed system-level 
evaluation of both software and hardware, with a specific emphasis on the security 
properties of the computing platform leveraging photonic hardware primitives. 

The interdisciplinary nature of the NEUROPULS project, and specifically of the Work 
Package 5 necessitates collaboration between experts in computer architecture, 
hardware design, neuromorphic computing, photonics, reliability, and hardware 
security. The simulation infrastructure, which will be built mainly in the context of the 
WP5, serves as a common ground where researchers from diverse backgrounds can 
converge, fostering collaboration and knowledge exchange. This cross-disciplinary 
synergy is essential for holistic advancements, ensuring that innovations in one domain 
consider the implications and requirements of others. 

The creation of such a NEUROPULS simulation infrastructure will not only meet the 
specific goals outlined above but will also position itself as a crucial enabler for future 
technological advancements. The capability to simulate complete computing systems, 
with a focus on neuromorphic accelerators and security primitives, not only aims at the 
understanding of existing architectures but also serves as a testing ground for novel 
future ideas and approaches, including performance, power, and reliability evaluations 
and enhancements. Therefore, creating an advanced simulation system is crucial for 
steering the direction of research in computing systems. 

1.1 Objectives 
The primary objectives of this work package (WP5), and thus, of this deliverable, are 
shown below: 
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a) Efficient Full System Simulation Tools Infrastructure: Our primary goal is to 
engineer a state-of-the-art infrastructure capable of efficiently simulating 
complete computing systems. This infrastructure will not only incorporate 
conventional computing elements (e.g., contemporary CPUs with cache 
memories, SRAM storage elements, such as register files, TLBs – Translation 
Lookaside Buffers, etc.), but will also integrate cutting-edge neuromorphic 
accelerators modeling (e.g., including storage elements, such as ScratchPad 
memories, register banks, etc.), and hardware security primitives. By doing so, we 
aim to create a versatile simulation environment that facilitates detailed 
evaluation and optimization of these innovative components. 

b) Exploration of Heterogeneous Computing Systems: The advent of photonic 
neuromorphic accelerators and hardware primitives has opened new frontiers in 
computing design. We aim to explore the broader design space of heterogeneous 
computing systems, leveraging the advancements made in Work Packages 2 
through 4 and also advancements currently available in the literature. By 
integrating photonic neuromorphic accelerators, PCMs (Phase-Change 
Memories) [1], and hardware primitives, we aim to push the boundaries of 
computing capabilities and assess their potential within a holistic system 
architecture. 

c) Support for Benchmarking Activities and Assessment of Design Parameters: 
Aligned with the objectives of Work Package 6 (Use Cases and Benchmarks), we 
intend to provide essential support for benchmarking activities. The focus will be 
on evaluating crucial design parameters at the system scale, with a dual emphasis 
on performance and power, thereby addressing the pivotal issue of energy 
efficiency. Through rigorous benchmarking, we aim to establish a comprehensive 
understanding of how these systems perform under varying workloads. 

d) Facilitation of Detailed System Level Evaluation of Security Properties: 
Recognizing the paramount importance of security in modern computing, our 
infrastructure will enable in-depth evaluations of the security properties of 
computing platforms. Specifically, the emphasis will be on platforms employing 
photonic hardware primitives. By conducting thorough evaluations at both 
software and hardware levels, we aim to contribute valuable insights to the 
broader discourse on securing advanced computing systems. 

1.2 Deliverable Organization 
The subsequent sections of this deliverable are organized in a way that provides a 
comprehensive understanding of the infrastructure development of Work Package 5 
(WP5). Each section is designed to unfold a specific aspect of this Work Package, 
outlining methodologies, approaches, tools, and frameworks used to achieve the 
previously outlined objectives. More specifically, in Section 2 we provide a 
comprehensive background for every aspect that WP5 covers, such as domain-specific 
accelerators, the gem5 simulator (the main simulation tool for the entire WP5), the PCM 
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memory models, and the PUF models. In Section 3 we delve into the technical 
challenges of infrastructure development, outlining the methodologies, tools, and 
frameworks employed to realize the ambitious objectives set forth. Section 4 presents 
the details of the PCM memory models in the simulation infrastructure, while Section 5 
covers the hardware security primitives and the software-related security protocols. 
Through this deliverable, we aim to contribute not only to the WP5's specific goals but 
also to the broader discussion on the future of computing architectures. 
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2. Background & Related Work 

2.1 Domain-Specific Accelerators 
With Moore's Law slowing down [25], domain-specific accelerators (DSAs) have become 
increasingly important due to their superior performance and efficiency on specific tasks 
compared to general-purpose CPUs [26]. Accelerators are specialized hardware engines 
designed for specific domains, such as graphics [27], deep learning [28], bioinformatics 
[29], image processing [30], and simulation [31]. They deliver high-performance gains by 
reducing overheads, offering fast specialized operations, optimized memory systems, 
and parallelism. General-purpose CPUs perform better at control-intensive tasks but are 
less efficient than DSAs for specific tasks [32]. As modern computing systems become 
more complex and heterogeneous, multiple CPUs of different ISAs, and a diverse set of 
DSAs need to cooperate for optimized performance and energy efficiency [33]. 

In the realm of electronic accelerators, these solutions are commonly realized through 
the utilization of customized integrated circuits (ICs) or Field-Programmable Gate Arrays 
(FPGAs). Their design is geared toward executing computations with optimal efficiency 
and throughput for targeted applications, complementing general-purpose CPUs in 
heterogeneous system setups. 

However, photonic accelerators exploit photonics principles to expedite information 
processing. These accelerators utilize photons, as opposed to electrons, for data 
transmission and processing, presenting advantages in terms of bandwidth, energy 
efficiency, and diminished heat generation. 

Some representative types of accelerators are the following: 

1. Google's Tensor Processing Units (TPUs): 

Google's TPUs [34] are domain-specific accelerators designed specifically for 
accelerating machine learning workloads. They are optimized for matrix 
multiplication, a common operation in neural network computations. TPUs are used 
internally in Google's data centers to accelerate AI and ML tasks. 

2. NVIDIA GPUs for Graphics and AI: 

NVIDIA's Graphics Processing Units (GPUs) [35] are widely used as domain-specific 
accelerators for graphics rendering. Additionally, NVIDIA GPUs have become 
popular for accelerating AI (Artificial Intelligence) and ML (Machine Learning) 
workloads. The parallel processing capabilities of GPUs make them suitable for tasks 
like deep learning training and inference. 

3. Intel FPGAs for Custom Acceleration: 

Intel's Field-Programmable Gate Arrays (FPGAs) [36] are reconfigurable devices that 
allow users to create custom accelerators tailored to specific applications. FPGAs can 
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be programmed to accelerate a wide range of workloads, from signal processing to 
encryption, providing flexibility in hardware acceleration. 

4. Optical Co-Processors: 

In the realm of photonic accelerators, there is ongoing research on the development 
of optical coprocessors for specific tasks [37], [38]. These coprocessors leverage the 
properties of light to perform specialized computations, aiming to enhance speed 
and energy efficiency in information processing. 

The design of both electronic and photonic domain-specific accelerators continues to 
be an active area of research and development as the demand for specialized and 
efficient computing solutions grows across various industries. NEUROPULS contributes 
to this domain by developing novel photonic computing architectures and security 
layers based on photonic PUFs in augmented silicon photonics CMOS-compatible 
platforms. 

2.2  The gem5 Simulator 
WP5 aims to build a comprehensive system architecture modeling and simulation 
infrastructure that incorporates neuromorphic accelerators and hardware primitives, as 
shown in Figure 1. To achieve this goal, the state-of-the-art computing systems 
simulator, gem5, will serve as the backbone for the entire WP5. gem5 [13] is a widely used 
system-level computer architecture simulator that provides a flexible and modular 
framework for modeling and simulating various aspects of computer systems. The 
primary goal of gem5 is to enable researchers and developers to explore and evaluate 
new architectural ideas, system designs, and software optimizations in a simulated 
environment before implementing them on real hardware. It supports cycle-level 
simulation of a wide range of computer architectures, including x86, Arm, MIPS, RISC-V, 
and other older ones, making it a versatile platform for researchers working on diverse 
computer architectures at the system level (including the microarchitecture, 
architecture, operating systems, and application layers of the computing stack). gem5 is 
open-source and has gained popularity in both academic and industrial research 
communities. 

CPU Domain-Specif ic 

Accelerator

PE … PE

Figure 1: gem5-based system architecture 
modeling and simulation infrastructure 

overview. 
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gem5's design is based on a modular and extensible architecture, allowing users to easily 
customize and extend the simulator to suit their specific needs. It includes models for 
various components such as processors, memory hierarchy, caches, interconnects, and 
peripheral devices, providing a comprehensive simulation environment for studying 
computer system behavior. 

gem5 originated as a successor to the M5 simulator [14]. The transition from M5 to gem5 
occurred to address limitations in M5 and to create a more modular and extensible 
simulation framework. The design philosophy of gem5 centers around modularity and 
extensibility. It employs a component-based architecture, allowing users to easily 
combine and modify simulation components to model different aspects of computer 
systems accurately. 

The simulator includes detailed modeling of memory hierarchies, including caches, 
main memory, and storage, and support for modeling on-chip and off-chip 
interconnects. Researchers can analyze the impact of different memory configurations 
and the effects of different communication architectures on system performance.  

Finally, gem5 is widely adopted in both academic research and industrial settings. It is 
used for a range of studies, including microarchitecture exploration, performance 
analysis, software development, and validation of new architectural ideas before actual 
hardware implementation. 

Some related works that complement or are often used with gem5 in the context of 
computer architecture research are shown below: 

1. SPEC and MiBench Benchmarks: 

The benchmark suites offered by the Standard Performance Evaluation Corporation 
(SPEC), including SPEC CPU 2017 [15], or other popular suites such as MiBench [48] 
are extensively utilized for assessing computer system performance. gem5 is 
commonly utilized by researchers to simulate the execution of SPEC benchmarks 
on CPU(s), enabling the evaluation of the effects of architectural modifications on 
practical workloads [16]. 

2. DRAMSim2: 

DRAMSim2 [17] is a memory system simulator that focuses specifically on modeling 
dynamic random-access memory (DRAM) behavior. Researchers integrate 
DRAMSim2 with gem5 [18] to study memory subsystem performance, investigate 
memory hierarchy designs, and analyze the impact of different DRAM architectures 
on overall system performance. 

3. Sniper: 

Sniper [19] is another cycle-level simulator that complements gem5 in the realm of 
computer architecture research. It provides detailed simulation capabilities for 
multicore processors and supports various performance analysis tools. Researchers 
frequently utilize gem5 for system-level simulations and turn to Sniper for faster 
microarchitectural studies, especially given the absence of system-level support in 
Sniper [20]. 
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4. Pin: 

Pin, developed by Intel [21], is a dynamic binary instrumentation tool. Researchers 
employ Pin for the instrumentation and analysis of binary programs, subsequently 
utilizing gem5 for simulations at the system level [22]. This pairing enables a 
thorough evaluation of behaviors at both the application and system levels. 

5. gem5-gpu: 

gem5-gpu [23] is a simulator designed to emulate tightly integrated CPU-GPU 
systems. It builds upon gem5, a modular full-system CPU simulator, and GPGPU-
Sim, a detailed GPGPU simulator [24]. This approach enables the simulation of 
diverse system configurations, including those with coherent caches and a unified 
virtual address space between the CPU and GPU, as well as systems maintaining 
separate physical address spaces for the GPU and CPU. Notably, gem5-gpu supports 
the execution of the most unmodified CUDA 3.2 source code, allowing applications 
to launch non-blocking kernels for simultaneous CPU and GPU processing. 

These related works and tools provide additional perspectives and capabilities to 
researchers using gem5, allowing them to conduct comprehensive studies across 
various levels of abstraction and dimensions of computer architecture. The combination 
of gem5 with these tools enhances the versatility and depth of architectural exploration 
in both academia and industry. Through the NEUROPULS project, our objective is to 
establish a novel System-on-Chip (SoC) infrastructure built upon the gem5 simulator. 
Leveraging its simulation effectiveness, we aim to deliver a new simulation 
infrastructure that supports not only CPU modeling but also accelerator designs within 
an SoC framework integrated with gem5. 

2.3  PCM Memory Models 
Conventional memory technologies like SRAM and DRAM fall short in meeting the 
escalating memory demands due to limitations in technology scaling, including low 
density, high standby power, and inadequate reliability. Phase-Change Memory (PCM) 
emerges as one of the most promising non-volatile memories (NVM) solutions. PCM cells 
utilize chalcogenide alloys, such as Ge2–Sb2–Te5 (GST), to store information by 
modulating the resistance transition between amorphous (high-resistance) and 
crystalline (low-resistance) states of the material. 

The process involves a SET operation (representing 1) where the phase change material 
undergoes crystallization induced by heating through an electrical pulse or laser 
irradiation, resulting in a transition to the crystalline state when the temperature 
exceeds its crystallization threshold. Conversely, a RESET operation (coding 0) entails 
applying a different electrical pulse followed by a quick cessation, or a brief exposure to 
lower laser heat, causing the cell to revert to the amorphous state. 

Adopting NVMs as a replacement for the current DRAM-based main memory 
architecture can yield substantial benefits, including reduction in total energy 
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consumption while maintaining the same capacity. However, with the continuous 
reduction in feature size, supply voltage, and increased on-chip density, computer 
systems are expected to become more susceptible to both hard errors and transient 
errors. 

Replacing SRAM-based on-chip caches with Non-Volatile Memories (NVMs) holds the 
potential to significantly enhance system performance owing to their larger capacity 
and reduce power consumption due to their zero-standby leakage feature. 

State-of-the-art NVM simulation methods must account for NVM-specific 
characteristics, allowing user applications to tailor them for customized interfaces. 
However, such customization imposes higher demands on developers. Architectural-
level NVM simulators (e.g., NVSIM, NVMain, CACTI) focus on hardware details such as 
memory cells and transistor size in physical designs. 

2.4 Physical Unclonable Function (PUF) 
Models 

Physical Unclonable Functions (PUFs) stand at the forefront of hardware-based security, 
providing a foundational layer characterized by ease of manufacture and inherent 
resistance to replication. This unique attribute positions PUFs as ideal candidates for 
generating and safeguarding cryptographic keys, particularly in device authentication. 
Operating through a Challenge-Response Pair (CRP) mechanism, PUFs introduce a 
robust process involving two crucial stages: enrollment and verification.  

In the enrollment stage, the distinctive physical characteristics of a device undergo 
capture and transformation into a digital representation. This intricate process exposes 
the device to challenges manifested as specific input signals or stimuli. The device 
responds to these challenges by leveraging its intrinsic physical properties, generating 
responses that collectively form the CRP. 

The captured responses are a digital fingerprint, giving each device a unique identity. 
This identity arises from inherent variations and imperfections within the physical 
components, rendering accurate replication nearly impossible. The primary objective of 
the enrollment stage is to establish a reliable and distinct signature for each device, 
ensuring that no two devices share identical CRPs. 

The verification stage employs the stored CRP to confirm the device's identity in 
subsequent interactions. The device responds when presented with a new challenge, 
and the generated output is compared to the stored CRP. A successful match between 
the response and the digital fingerprint affirms the device's identity, granting 
authentication. This verification process is a crucial security measure, permitting access 
or authentication only to legitimate devices with the correct physical characteristics. Any 
attempts to clone the device or employ fraudulent responses lead to mismatches during 
verification, thereby fortifying the system's overall security. 
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Beyond the enrollment and verification stages, PUFs exhibit diverse classifications based 
on material fabrication and security attributes. Material categorizations include 
distinctions such as silicon and non-silicon, electronic and non-electronic. Security 
classifications delineate PUFs into categories such as Weak and Strong PUFs. The 
NEUROPULS project specifically focuses on photonic PUFs, which rely on the random 
splitting of a laser beam interacting with multiple resonant devices. 

The NEUROPULS project aims to leverage the same technology used for the accelerator 
and the photonic PUF. In particular, the photonic PUF will be coupled with the 
accelerator to provide a signature also of the accelerator. The utilization of PUFs created 
from silicon photonics has demonstrated efficacy, as evidenced by diverse studies and 
author contributions [53] [55]. 

The application of photonic PUFs, especially within silicon photonics, showcases 
promising results and aligns with ongoing research endeavors, such as the innovative 
NEUROPULS project. Two different PUFs are available in the literature, and the following 
subparagraph will describe them to better grasp their peculiarities. 

2.4.1 Weak PUFs 

A Weak PUF is characterized by a limited number of challenges, often as few as one fixed 
challenge. In contrast to Strong PUFs, which prioritize intricate challenge-response 
behavior, Weak PUFs utilize their limited set of challenges to derive a classical binary 
secret key. While Weak PUFs may be advantageous regarding invasiveness and 
individualization during production, their susceptibility to side-channel attacks, such as 
power consumption or emanation analysis, poses a challenge. Unlike Strong PUFs, they 
lack complexity and resistance to numerical prediction, relying on error correction for 
their limited challenges. Examples include the SRAM PUF, Butterfly PUF, and Coating 
PUF, each tailored for specific cryptographic applications focusing on simplicity in key 
derivation. In essence, weak PUFs serve as a specialized form of secret key storage 
suitable for various cryptographic schemes but necessitates considering their 
susceptibility to certain attacks. 

2.4.2 Strong PUFs 

Strong PUFs are designed to provide heightened security in the face of potential 
adversarial threats. PUFs, which generate unique digital fingerprints through CRPs, 
serve as identifiers for electronic devices. Strong PUFs set themselves apart by exhibiting 
a complex and intricate relationship between challenges and responses, creating a 
formidable barrier for adversaries attempting to predict or imitate their behavior. The 
requirement for a vast and practically unmanageable number of possible challenges 
adds a layer of security, making it computationally infeasible for attackers to determine 
all challenge-response pairs within a limited timeframe. Strong PUFs resist cloning by 
ensuring that responses are extremely difficult to replicate, leveraging manufacturing 
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variations and structural disorders beyond the control of the original manufacturer. 
Notably, the challenge-response behavior of Strong PUFs, exemplified by the Optical 
PUF using random optical reflection patterns, finds application in key establishment and 
identification protocols. The inherent complexity of Strong PUFs makes numerical 
prediction challenging for adversaries, enhancing the unpredictability and overall 
security of these specialized devices. In summary, Strong PUFs play a crucial role in 
fortifying the security of electronic devices by incorporating advanced features that 
resist adversarial attempts to compromise their identification mechanisms. 
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3. Simulation Infrastructure for 
Neuromorphic Accelerators Models 

This section delves into the heart of the simulation infrastructure — the system 
architecture simulation framework, which is called gem5-MARVEL [33]. It outlines the 
underlying principles, methodologies, and innovations embedded in the gem5-MARVEL 
framework. Special emphasis is placed on its ability to accommodate neuromorphic 
accelerators and design space exploration using the NEUROPULS simulation 
infrastructure, ensuring a holistic representation and exploration of modern computing 
systems. 

3.1 gem5-MARVEL 

3.1.1 gem5-based Accelerator Modeling 

Recently, several efforts have been made to integrate domain-specific accelerator (DSA) 
models with the state-of-the-art gem5 simulation environment. These efforts include, 
among others, gem5-Aladdin [39] and PARADE [40]. Additionally, SystemC support was 
added to gem5 [41] enabling the potential of cycle-accurate modeling of hardware 
structures including accelerator datapaths. Therefore, existing works for modeling 
domain-specific accelerators rely either on pre-RTL [39], [40] or RTL-based solutions [41] 
(e.g., C/C++-based models). 

However, all these options have significant disadvantages. On one hand, both gem5-
Aladdin and PARADE, although they are both pre-RTL frameworks and thus, 
comprehensive, they provide limited support for design space exploration due to their 
restrictive simulation semantics. In addition, they suffer from low simulation fidelity 
when data availability, parallelism, and timing are not decoupled from the input dataset. 
On the other hand, while SystemC support offers the potential of highly accurate 
modeling, being an RTL-based alternative, it requires considerably higher design effort 
and eventually provides lower throughput than the other two pre-RTL frameworks. 
Although low-level simulators may provide accurate fault effects, their simulation 
throughput is extremely low to be affordable and cannot model long-running workloads 
with OS activity (RTL simulation is several orders of magnitude slower than cycle-level 
microarchitectural simulation [42]-[44]. To this end, gem5-MARVEL relies on 
microarchitecture-level simulation using the latest version of the gem5 simulator [13], 
[45], which allows (i) deterministic, (ii) end-to-end, (iii) cycle-level execution of (iv) large 
workloads (v) on top of an operating system; this combination is impossible at lower 
levels. To this end, we are based on a new pre-RTL framework, which overcomes these 
limitations and provides flexibility, and excellent tradeoffs among performance, 
simulation fidelity, and ease-of-use. 
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3.1.1.1 gem5-SALAM 

gem5-MARVEL is an extension of gem5-SALAM [46] that uses an advanced dynamic 
graph execution engine based on LLVM [47]. gem5-SALAM instruments the LLVM IR 
(Intermediate Representation) to model DSAs using C descriptions of their functionality. 
Its main advantages are: 

• It provides accurate representation of the accelerator datapath based on analysis 
of the LLVM intermediate representation of the accelerated algorithm. 

• It provides cycle-level modeling through the dynamic LLVM-based runtime 
execution engine. 

• It decouples the datapath and memory components to aid design space 
exploration and system optimization. 

• gem5's tight integration enables seamless and intricate interaction between the 
accelerator and other system modules, including the CPU and the memory 
subsystem. Its high level of integration within the gem5 allows for complex 
interaction between the accelerator and other system modules, such as the CPU 
and the memory subsystem. 

For the above reasons, we believe that gem5-SALAM is the ideal candidate for 
integration into our framework to complement the CPU side of the system with the 
accelerators side. This lets us evaluate the performance and reliability of many 
accelerator architectures, ranging from loosely coupled multi-accelerator configurations 
to tightly coupled coprocessors. 

3.1.1.2 Architecture Overview 

The gem5-based simulation infrastructure comprises two core components: the 
Compute Unit and the Communications Interface. The Compute Unit represents the 
custom accelerator's datapath, while the Communications Interface facilitates memory 
access, control, and synchronization through memory access ports, Memory-Mapped 
Registers (MMRs), and interrupt lines. The memory access ports allow parallel access to 
different memory types like scratchpad memories (SPMs) and register banks (these two 
types of memories occupy the largest part of the area of many accelerators). MMRs 
consist of configurable status, control, and data registers, enabling low-level device 
configuration and facilitating communication between the accelerator and the host, 
and between multiple accelerators in a cluster. By treating the accelerator as a memory-
mapped device, the host can utilize the provided interrupt signals for synchronization 
without the need for constant polling.  

Additionally, the gem5-based infrastructure includes Direct Memory Access (DMA) 
devices and custom memories that can be seamlessly integrated into accelerator 
designs, enhancing its versatility. Figure 2 shows the SoC architecture, including gem5-
SALAM's features, on which our fault injector is built. Specifically, the accelerator designs 
that we tested are loosely coupled and communicate with the host CPU via MMRs and 
DMA transactions. The CPU writes the input and output memory addresses to the 
accelerator MMRs and directs the accelerator to start the computation. The accelerator 
transfers the data to its SPMs or Register Banks via DMA, performs the required 
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calculations, and transfers the data back to the system memory. After task completion, 
it notifies the host via a pre-defined interrupt. 

3.1.2 Adding RISC-V Support 

Currently, gem5-SALAM only supports the Arm ISA (Instruction Set Architecture) when 
it comes to the processor cores of the simulated system. However, the tremendous 
growth of the RISC-V ecosystem in the past few years, and its rapid adoption in both 
academia and industry, motivated us to port gem5-SALAM to also support the RISC-V 
ISA and system configuration. 

The recent introduction of RISC-V full-system execution support into gem5 was highly 
beneficial to this endeavor. Nonetheless, the main challenge of extending the 
framework to also support the RISC-V ISA is to identify the Arm-specific components (i.e., 
the ISA dependencies) and translate them into the corresponding RISC-V ones. We 
summarize below the major components that had a strong dependency on the Arm 
platform. Specifically: 

• The interrupt system used by gem5-SALAM hardware components that 
employed the Arm General Interrupt Controller (GIC) for posting interrupts to the 
host CPU,  

• The automatic gem5 configuration script generator used an Arm gem5 
configuration script as a template. 

Figure 2: gem5-based SoC architecture and interconnection. 
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Next, we summarize these two ISA-dependent features, and how we converted them to 
enable RISC-V support into gem5-SALAM. 

3.1.2.1 From (Arm) GIC to (RISC-V) PLIC 

gem5-SALAM hardware components, use the Arm GIC (Generic Interrupt Controller) to 
send and receive interrupts to and from the CPU, aiding the synchronization between 
accelerator and host and removing the overheads of constant polling. We translated 
these functions at both hardware and software levels to the Platform Level Interrupt 
Controller (PLIC) present in the current gem5 RISC-V model. To make the transition from 
GIC to PLIC possible into the gem5-MARVEL we had to change the interrupt interface of 
the gem5 objects modeling the accelerator design to work with the RISC-V PLIC. We 
also had to modify the setup code and interrupt handlers that were specific to GIC, and 
alter them to the corresponding of the PLIC interface, as it is defined in the RISC-V ISA. 
After a lengthy debugging process, we managed to identify a bug in the gem5 PLIC 
implementation that resulted in the incorrect memory mapping of the interrupt claim 
space. After rectifying this issue, we were able to use interrupts to properly synchronize 
accelerator functions with the host CPU. 

3.1.2.2 Automatic Configuration Script Generator 

gem5-SALAM uses an automatic gem5 configuration script generator to simplify the 
development of accelerator-rich SoCs. This allows for complex configuration scripts to 
be generated by parsing a single YAML file that contains a description of the simulated 
system. To port the generator to RISC-V ISA and in the latest version of gem5, we 
swapped the Arm-specific script template to an already existing RISC-V full-system 
configuration script, made modifications to initialize the gem5-SALAM components, and 
added the accelerator memory-mapped addresses to the address ranges of the RISC-V 
platform.  

3.1.3 Fault Injection 

3.1.3.1 Overview 

gem5-MARVEL is also a fault injection framework, that operates at the 
microarchitecture-level and supports transient and permanent fault injections to all 
hardware structures of the CPU and for the three prevailing ISAs (x86, Arm, RISC-V). The 
fault injection feature was implemented in the simulation framework to support the 
reliability aspect of the NEUROPULS project through the WP5.  

Every fault injection campaign consists of a series of faults to be injected, which 
constitute the statistical sample, the simulations for every fault, the output results, and 
their parsing to estimate the vulnerability (or other desired metrics). As shown in Figure 
3, depending on the parameters of the system (i.e., the microarchitectural details, the 
size, and structure of the hardware components, etc.), a different component of gem5-
MARVEL is in charge of producing these fault mask files for a fault injection campaign 
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. Running scripts that serve as a campaign controller and are in charge of carrying out 
each step necessary for a full SFI campaign are used by gem5-MARVEL to manage fault 
injection campaigns. These scripts compose the library of the gem5-MARVEL. For 
injecting a single or multiple faults during system simulation, each fault injection 
simulation requires a fault mask input file . The fault injection simulations come next 
, in which the controller supplies the necessary inputs for the simulation and stores 
copies of the results. Multiple systems and/or CPU cores can be used to speed up the 
assessment, turning the time consumption problem to an infrastructure scale one. 
gem5-MARVEL can be configured to spawn multiple workers for a fault injection 
campaign to achieve 100\% utilization of the available hardware resources.  

Each gem5-MARVEL instance runs an independent simulation, which corresponds to 
one injected fault (single or multiple), and once the simulation finishes, it produces 
several output files and logs , with any required information about the specific fault 
injection run. Once the simulation is complete, all generated outputs and system states 
(including simulation statistics, output files, terminal I/O, operating system verbose 
(faults, messages, exceptions, etc.) are stored for post-processing. These are used to 
determine what the result of the injected fault on this simulation was. Finally, the results 
are parsed . Figure 3 shows the preparation (also known as campaign initialization), 
simulation, and parsing phases of this process. gem5-MARVEL contains a pool of 
hardware configurations and benchmarks from which the user may choose to do the 
AVF or HVF assessment to make usage simpler and more user-friendly. Additional 
hardware configurations or benchmarks can be added to the pool at any time. The last 
step, after the parsing phase, is the final AVF (or other metric, e.g., HVF) estimation . 

 

3.1.3.2 Measuring AVF and HVF 

gem5-MARVEL evaluates both the AVF and the HVF and provides accurate evaluation 
results using statistical fault injection for both methodologies. The Hardware 
Vulnerability Factor (HVF) of a hardware structure is the fraction of faults in the structure 
that are either activated within the hardware layer or exposed to a higher layer [50]. A 
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hardware-visible fault is exposed to the user program once it reaches a software (or 
architecture visible) resource [51]. 

gem5-MARVEL employs two vulnerability evaluation methodologies of different layers: 
the HVF assessment [50] and the AVF assessment, providing the partial 
microarchitecture-dependent vulnerability and the full cross-layer vulnerability, 
respectively. As shown in Figure 4(a), the microarchitecture-dependent evaluation (HVF) 
focuses on the effects of hardware faults only until they first “touch” the software layer 
and stops at that point. Apparently, for accelerator designs, where the faults target the 
scratchpad memories of each design, the HVF and AVF analysis are identical. The reason 
is that the architecture of a domain-specific accelerator is totally different from the 
architecture of a general-purpose CPU.  

In an accelerator design, any fault is eventually visible, unless the fault hits an invalid or 
unused cell of the scratchpad memory. In that case, the fault is characterized as masked. 
The HVF analysis considers as Benign faults, those faults that eventually get masked by 
a microarchitectural operation (e.g., a misprediction), and thus, the fault occurrence 
never reaches the commit stage of an out-of-order microprocessor (i.e., the fault is not 
architecturally visible). On the other hand, any fault that reaches the commit stage (i.e., 
architecturally visible), is considered as a corruption and participates in the total HVF 
measurement.  

AVF (see Figure 4(b)) on the other hand, considers the entire program’s execution, an 
architecturally visible fault may affect the program’s operation or may get masked. A 
fault that either reaches the software and gets masked by a program’s operation (e.g., 
the corrupted register value is never be used) or it is benign (it does not reach the 
software), it is a Masked fault for the AVF classification, since it does not affect the 
program. On the other hand, a fault that eventually reaches the software layer and 
subsequently affects the program’s operation, it is classified either as an SDC or as a 
Crash. This is the process that gem5-MARVEL follows for the HVF and the AVF 
assessments. 
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3.1.3.3 Implementation of gem5-MARVEL 

The main objectives of the gem5-MARVEL fault injector are as follows:  

(1) gem5-MARVEL ensures accuracy in the vulnerability (AVF and HVF) reports it delivers. 
To achieve this objective, applications, benchmarks, or accelerator design models, are 
executed until completion unless a fault is earlier identified to be masked (e.g., the fault 
is injected into an invalid cache line, or it is overwritten before being read). This allows for 
capturing the final program impact of faults. 

(2) gem5-MARVEL increases the speed of fault injection campaigns, especially for 
transient faults evaluations. To this end, multiple workstations can be utilized, and the 
gem5-MARVEL is optimized to terminate a fault injection run immediately in scenarios 
where a fault is inserted in an invalid or unused entry of a hardware structure or when a 
faulty entry is overwritten before ever being read. These optimizations provide 
significant speedup for individual runs across all benchmarks and structures, resulting 
in significant savings in injection campaign time. 

(3) gem5-MARVEL is highly configurable, as discussed in section 3.1.3.1.  

gem5-MARVEL is composed of a modified version of gem5 that permits fault injection 
and includes instrumentation for controlling and executing simulation campaigns, 
through a library of automated scripts. It supports various types of fault models, 
including transient and permanent faults, in single or multiple configurations or any 
combination. The framework incorporates fault masks that specify the injection of faults, 
which can contain one or multiple faults for the simulation.  

It has enough information to accurately target one or multiple components at a certain 
time or period. Each fault is described by: (i) thread ID (i.e., simulated CPU ID), (ii) 
microarchitectural component, (iii) position within the component (bit granularity), (iv) 
fault model, (v) clock cycle of the occurrence, and (vi) mask effect (bit flip, stuck-at 1, stuck 
at 0). Moreover, gem5-MARVEL uses configuration presets. Each configuration preset 
consists of attributes, such as the ISA, memory configuration, CPU core (in-order, out-of-
order, etc.), multicore setup, system setup, disk images, Linux kernel versions, etc., along 
with gem5-MARVEL attributes and a list of supported hardware structures for injections. 
New configuration presets can be easily added to cover different requirements. In such 
a way, it is straightforward for any user to add any desired design parameters to support 
100s of different purposes. 

gem5-MARVEL provides high flexibility and ease of expansion, which makes it suitable 
for any reliability evaluation study and any new microprocessors or accelerator design. 
gem5-MARVEL has a modular design, which employs inherent checkpointing features 
of gem5 to ensure that the faults affect only the execution of the program being studied. 
To accelerate the injection process, we have incorporated additional functionality into 
gem5's checkpointing mechanism to preserve both the microarchitectural and 
architectural states (gem5 preserves only the architectural state). Consequently, it 
becomes possible to study long-running workloads (without long warm-up periods) and 
initiate the analysis from any desired time point while maintaining the accurate 
microarchitectural state, including the correct data in cache memories. 
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3.2 Accelerator Designs and Design Space 
Exploration 

Building on the foundation described in the previous section, this section explores the 
diverse design space of heterogeneous computing systems. It details the integration of 
diverse photonic neuromorphic accelerators found in the literature, showcasing how the 
infrastructure facilitates exploration and optimization of future designs. 

3.2.1 Configurations, Components, Benchmarks & 
Accelerator Designs 

gem5-MARVEL supports all dominant 64-bit ISAs, i.e., Arm, x86, and RISC-V, and for the 
CPU side evaluations we present in the following sections, we model the same out-of-
order microarchitecture for every ISA (microarchitectural modifications can of course be 
arbitrarily implemented in gem5), as shown in Table 1. This is a commonly used 
configuration for modern mid-end commercial CPUs.  

gem5-MARVEL targets tens of hardware structures for both CPUs and DSAs. gem5-
MARVEL supports various CPU microarchitectural components as fault-injection targets 
and performance analysis, including integer and floating-point physical register files, 
memory cache levels, load and store queues, reorder buffer, TLBs, register renaming 
unit, etc. We focus on five major CPU structures for fault injection: (1) Integer Physical 
Register File, (2) L1 Instruction Cache, (3) L1 Data Cache, (4) Load Queue, and (5) Store 
Queue. For DSA designs, fault injection and performance analysis results are reported 
for scratchpad memories and register banks, since these are the available DSA hardware 
structures.  

Scratchpad memories are high-speed internal memories located close to accelerator 
functional units (see Figure 2}; DSAs consist of functional units). They serve as temporary 

Table 1: Major Simulator Configurations for each ISA. 

Parameter Value 

ISA RISC-V / Arm / x86 

Pipeline 64-bit OoO (8-issue) 

L1 Instruction Cache 32KB, 64B line, 128 sets, 4-way 

L1 Data Cache 32KB, 64B line, 128 sets, 4-way 

L2 Cache 1MB, 64B line, 2048 sets, 8-way 

Physical Register File 128 Int; 128 FP 

LQ/SQ/IQ/ROB entries 32/32/64/128 
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storage for ongoing calculations and data manipulation, tailored to the specific needs of 
the accelerator design. In our accelerator configurations, scratchpad memories play a 
crucial role in handling input, output, and intermediate data for accelerated algorithms. 
Input data are transferred from the CPU to accelerators via DMA, and the results are 
DMA'd back to the CPU after processing. Register banks fulfill a comparable role to SPMs 
but function as slower and less complex components, showing a delta delay between 
the moment a register is written to and when the data becomes available for read 
operations. 

We employ a comprehensive and diverse set of 15 workloads from the MiBench 
benchmarks suite [48] for all 3 different CPU ISAs. For the DSAs evaluation, we present 
results for fault injections in the two largest types of accelerator memory structures: the 
scratchpad memories and the register banks of the designs. We employ 8 MachSuite 
accelerator designs [49] (see Table 2) and we measure their AVF when running full-
system simulations based on the RISC-V ISA for the CPU side. For each structure, 1,000 
single-bit faults are randomly generated following the uniform distribution as defined in 
[52], resulting in nearly 250,000 fault injection runs in total for all benchmarks and 

Table 2: Target Injection Components for each Accelerator Design. 

Accelerator Component Memory Size (Bytes) Memory Type 

BFS 
EDGES 16,384 Register Bank 

NODES 2,048 Register Bank 

FFT 
IMG 8,192 Scratchpad Mem 

REAL 8,192 Scratchpad Mem 

GEMM 
MATRIX 1 32,768 Scratchpad Mem 

MATRIX 2 32,768 Scratchpad Mem 

MD_KNN 
NLADDR 16,384 Scratchpad Mem 

FORCEX 2,048 Scratchpad Mem 

MERGESORT 
MAIN 8,192 Scratchpad Mem 

TEMP 8,192 Scratchpad Mem 

SPMV 
VAL 13,328 Scratchpad Mem 

COLS 6,664 Scratchpad Mem 

STENCIL2D 

ORIG 32,768 Scratchpad Mem 

SOL 32,768 Scratchpad Mem 

FILTER 360 Register Bank 

STENCIL3D 

ORIG 65,536 Scratchpad Mem 

SOL 65,536 Scratchpad Mem 

C_VAR 8 Register Bank 
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accelerator designs, 3 different 64-bit ISAs, and all hardware components for CPU and 
DSAs. We follow the widely adopted formulation of [52] for the statistical fault sampling 
calculations; our 1,000 faults correspond to 3% error margin with 95% confidence level. 

3.3  Performance and Reliability 
Evaluation Metrics 

This section provides insights into the assessment of critical design parameters. It 
illustrates the methodologies that will be employed to evaluate performance and power 
efficiency of CPUs and accelerator designs, showcasing how the NEUROPULS simulation 
infrastructure contributes to the energy-efficient design of computing systems. 

3.3.1 Domain-Specific Accelerators Vulnerability 
  Evaluation 

In this subsection, we report the AVF results from fault injection on eight different DSA 
designs, targeting their large on-chip SRAMs: scratchpad memories (SPMs) and register 
banks (RegBanks). These components store input, output data, and intermediate results 
of accelerated algorithms. For each DSA, we select representative SPMs and RegBanks 
for independent fault injection campaigns to assess their AVF, as shown in Table 2. 
Figure 5 presents the breakdown of SDC and Crash fault effects, which together 
constitute the complete AVF, for all designs. 

The BFS DSA design uses two distinct RegBanks for accessing the EDGES and the 
NODES of the input graph and does not use any SPMs. The AVF of the EDGES RegBank 
is 35%, while the AVF of the NODES RegBank is 20%, and as shown in Figure 5, nearly all 
fault effects of BFS are Crashes. This is due to data from both RegBanks being used as 

Figure 5: AVF for different accelerator designs with different injection 
targets. 
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indices for graph traversals by the accelerator hardware. As a result, faults in any 
RegBank lead to either excessively long execution times or out-of-bounds memory 
accesses that surpass the size of the system's physical memory.  

The FFT design utilizes two SPMs to store the imaginary (IMG) and REAL components of 
the algorithm's output. The IMG SPM has an AVF of 44.5%, while the REAL SPM has an 
AVF of 45.1%. These AVFs are quite similar because a fault in either the imaginary or real 
part of the FFT result has an equal probability of corrupting the accelerator output. 
Interestingly, as shown in Figure 5, all faulty runs result in SDCs, since the SPM data is 
not utilized by any accelerator control logic or used as indices for memory accesses.  

The same pattern is also observed in the GEMM and MERGESORT designs. GEMM holds 
the input data of one of the matrices to be multiplied in one SPM and the result of the 
matrix multiplication in another SPM, while MERGESORT uses two SPMs to store the 
main array data and temporary intermediate values. As shown in Figure 5, the output 
SPM (MATRIX3) of GEMM has significantly lower AVF than the input SPM. This can be 
attributed to the injected faults in the output SPM being overwritten much more often 
because the input SPM gets written to only once by the DMA device when the 
accelerator is initialized, whereas the output SPM gets written to for the entire 
accelerator runtime.  

For MERGESORT, the TEMP SPM has significantly lower AVF than in MAIN SPM, which 
can be attributed to the overwriting of numerous faults due to the continuous stream of 
memory writes to the SPM. Similar observations are valid also for the remaining DSA 
designs, which are omitted due to space limitations. 

Observation: Most accelerator designs result in very high SDC rates in the presence of 
faults. 

Architectural Implication: Most accelerators are datapath-heavy, with few control 
dependencies on their input data. This characteristic enables accelerators to efficiently 
execute data-intensive tasks by prioritizing parallel processing of large data volumes. 
However, it also amplifies the probability of SDCs in the presence of transient faults. 
Therefore, fault mitigation strategies for accelerators should primarily focus on data 
corruptions and not the control flow. 

3.3.2 Performance-Aware Comparison 

We explore how different computing systems can be fairly compared using gem5-
MARVEL regarding reliability and show how vulnerability measurements can be 
combined with system performance. We showcase our methodology with a test case 
scenario by comparing the reliability of two different computing systems: a standalone 
RISC-V CPU and a standalone DSA. For a fair comparison, 4 algorithms are properly 
implemented to run and are modeled in both computing systems. These are a Matrix 
Multiplication Algorithm (i.e., GEMM), BFS, FFT, and KNN algorithms (as described in 
Table 2). AVF is a pure reliability metric that provides no information about system 
performance.  



 

D5.9 System Architecture Model and Simulation Platform: Iteration 1 – Public  28 

 

AVF alone cannot provide any insights on the tradeoff between performance and 
reliability of a chip. To this end, gem5-MARVEL is also able to compute a new simple 
reliability metric named Operations per Failure (OPF). OPF is the number of times a 
workload is executed before a system failure happens and is computed using the 
following formula: OPF = OPS / AVF, where OPS (Operations per Second) is the number 
of operations (i.e., tasks) that the compute unit can perform during 1 second. Assume, for 
example, the Matrix Multiplication algorithm, which performs 2 x N3 operations, where N 
is the size of the matrices. Thus, OPS = 2 x N3 / Exec_Time.  

The OPF metric enables a combined analysis of performance and reliability into a single 
metric. For the same workload that runs on different platforms (a CPU or an accelerator 
in our example), larger OPF values indicate a better tradeoff between reliability and 
performance (larger number of correct executions over time). 

Figure 6 showcases the pure reliability evaluations against the new proposed metric for 
the 4 algorithms, which considers the performance of the platform and presents the 
tradeoff between performance and reliability in a single metric. As Figure 6 
demonstrates, while the AVF (left graph) shows that all 4 algorithms running on the 
accelerator (the DSA labels in the x-axis) are significantly more vulnerable than running 
on a RISC-V CPU, the combined vulnerability and performance metric OPF (right graph) 
shows that the same algorithms can be executed in the accelerator significantly more 
times than in the CPU before observing a system failure (i.e., better tradeoff between 
performance and reliability for the accelerator design).  

Observation: Although the accelerator design is more vulnerable, it demonstrates a 
better tradeoff between performance and reliability. 

Architectural Implication: The higher OPF value suggests that the accelerator design 
offers increased resilience and can maintain stable operation for a more extended 
period, making it more suitable for executing the algorithm in real-world scenarios 
where reliability is crucial. Although AVF highlights its higher vulnerability, the 
advantages in OPF emphasize the benefits of using the accelerator design to achieve 
improved performance while maintaining an acceptable level of reliability.  

Figure 6: Breakdown of SDC and Crash AVF of 4 algorithms for both CPU and 
accelerator (left graph), and the OPF for CPU and accelerator (right graph). 
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3.3.3 Accelerator Design Space Exploration 

The accelerator design side of gem5-MARVEL is capable of modeling data-dependent 
control accelerator execution by independently evaluating the static and dynamic 
elements of the system, which allows for more configuration options facilitating design 
space exploration. While it provides a default hardware profile that creates a 1-to-1 
mapping of instructions to functional units, the user can also specify constraints on 
individual hardware resources to enforce functional unit reuse. The gem5-MARVEL 
ecosystem utilizes additional parameters in the "config" and "hardware profile" to fine-
tune the system. The hardware resource model is generated dynamically from YAML 
configuration files that define a hardware profile.  

This change enables the user to create and define hardware profiles at the granularity of 
individual accelerators within the cluster. The hardware model generated from this 
profile defines how functional units and instructions are handled during runtime 
simulation. This allows users to redefine any parameter within the hardware model, 
including creating and linking customized instructions and functional units, and begin 
a new simulation without needing to recompile or rebuild the system [46]. 

In this subsection, we showcase how the gem5-MARVEL can leverage the inherent 
features of both gem5 and explore the accelerator design space from the reliability point 
of view. As a case study, we show the reliability evaluation of the MachSuite GEMM 
accelerator for different degrees of parallel processing, i.e., amount of parallel functional 
units. Figure 7(a) shows the AVF of SPM1 (holds the data of one of the input matrices) for 
the different accelerator configurations. We can see that as the parallel functional units 
are reduced, the AVF (the vulnerability) increases significantly. This may be attributed to 
the slower SPM access rate that allows more faults to propagate to the output without 
being masked. %This observation applies to this kind of memory since the data occupy 
the entire SPM from the beginning of the processing.  

Note that the data occupies the entire SPM from the beginning of processing. Along the 
same lines, in Figure 7(b) we can see the differences of performance and area for the 
GEMM accelerator design. It is clear from these graphs that based on the outcomes of 
gem5-MARVEL we can find the optimal tradeoff between reliability, area, and 
performance. 

Observation: The AVF increases significantly when the number of parallel functional 
units in DSAs is reduced. 

Architectural Implication: With fewer parallel functional units, faults have a higher 
chance of affecting the output data due to the data occupying the entire SPM from the 
beginning of processing. This implies that designs with fewer parallel functional units 
may be more susceptible to transient faults, potentially leading to incorrect results 
during computation. To enhance fault resilience, future designs could consider 
optimizing the access rates to the SPM and implementing suitable fault-tolerance 
mechanisms. 
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3.4 Reliability Assessment of the    
 Heterogeneous Architecture 

gem5-MARVEL is a state-of-the-art microarchitecture-level fault injection framework 
that targets heterogeneous SoC architectures, including both CPUs of different ISAs and 
DSAs. Such a framework can provide numerous invaluable insights into the overall 
systems' resilience. We group the fundamental insights that gem5-MARVEL can deliver: 

• CPU ISA comparison: By injecting faults into CPUs with different ISAs, gem5-
MARVEL can compare fully unprotected designs or any error detection or 
correction mechanisms at the software or hardware layer. This analysis reveals 
which ISA performs better under fault conditions and which requires stronger 
protection. 

• Accelerator impact: Fault injection in DSAs helps understand how resilient they 
are to different fault scenarios, which is critical in several application domains. 

• System-level resilience: gem5-MARVEL allows analyzing the overall system's 
resilience. By injecting faults at different locations in the system, it can be 
observed how the CPUs and accelerators interact and recover from faults. This 
knowledge is valuable for designing next-generation fault-tolerant systems at 
scale.  

• Error recovery mechanisms: gem5-MARVEL can shed light on the effectiveness 
of error protection (detection and correction) mechanisms in both the CPUs and 
accelerators. This insight can guide improvements in the system's error handling 
and fault recovery strategies. 

• Power and performance trade-offs: gem5-MARVEL can help the concurrent 
assessment of the complex tradeoffs among power consumption, performance, 

Figure 7: Gemm accelerator design for five different configurations of available 
functional units, showing (a) the AVF for different functional units, and (b) the 

performance and area statistics. 
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and resilience. It provides insights into how protection mechanisms can impact 
performance and power efficiency.  
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4. Memory Hierarchy Models 
The emergence of novel memory technologies offers significant advantages over 
traditional ones and provides designers with opportunities for extensive design space 
explorations. These emerging memory technologies have the potential to revolutionize 
system architecture and performance. 

The focus of this task is the modeling of the system memory hierarchy for systems that 
employ neuromorphic accelerators hardware (including those considered in the Use 
Cases of the project). The novel aspect of this task is the insertion of PCM memory 
models (with parameters coming from the design and characterization work in WP2- 
WP4) at different levels of the memory hierarchy and the evaluation of its contribution 
to the main aspects of the system: performance and power consumption which 
combined determine the energy efficiency of the system. 

4.1 NVMain 
This task focuses on identifying and configuring the simulator infrastructure needed to 
validate and extrapolate the optic chip behavior. In this sense, first it was needed to 
identify from the different available simulators those that can satisfy the project 
requirements. NVMain [54] was selected, see Figure 8 The main reason is because it is a 
specialized framework tailored for Non-Volatile Memory (NVM) systems, which 
introduces two pivotal features that enhance its appeal for NVM memory modeling. 
Firstly, its modular design facilitates integration and toggling of various techniques 
aimed at addressing endurance and write-related challenges, as well as hybrid memory 
configurations, enabling thorough exploration of architectural design spaces. Secondly, 
NVMain stands out as the first main memory simulator to incorporate data values 
efficiently, which proves invaluable in assessing application-level implications of NVM 
designs, particularly those based on multi-level cell architectures. In the figure below, an 
overview of the NVMain architecture is described. 

NVMain configuration involved 2 steps: integration into the gem5 simulator and the 
identification of the parameters that need to be tailored to imitate the chip behavior. 
Regarding the integration, NVMain was originally integrated by its creators into gem5 
on early versions to analyze how the PCM memories such us Intel Optane had on 
systems where they were integrated. That integration was abandoned on a fork of the 
NVMain project, leading to the complete obsolescence of the integration due to hard 
changes on the simulator insights. Nowadays, the NVMain simulator integrated with 
gem5 can only be used on containers targeting that older version, which is incompatible 
with the new architectures and improvements included on the newer versions of the 
gem5 simulator. 
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To address this, we made an effort to reintegrate again NVMain on the latest version of 
gem5. That is, we performed an integration from the older gem5 version into gem5 
22.0.0.2. To this end, the latest common commit between NVMain and gem5 main 
branch has been tracked. Patches have been applied on the source code to solve the 
integration problems in that old commit. Since the last integration commit it has been 
found that it is not possible to apply a clean merge on gem5 due to code refactor 
changes inside the memory component, cache subsystem and their own cache protocol 
(based in ruby, which has been discontinued).  In this sense, the structural changes 
inside the gem5 code have been tracked to fully re-integrate NVMain.  

Furthermore, NVMain uses Python version 2, which is not compatible with gem5 as it 
uses Python version 3. An effort has been made to make NVMain compatible with 
Python 3 to allow integration into gem5. 

Regarding the parameters, we identified the configuration parameters that can imitate 
similar behaviors on NVM to those that may be required within the project. In this way, 
from the integration of the NVMain onto the gem5 simulator is expected to analyze the 
behavior of the optical non-volatile memories (PCM) used in this project, due to NVMain 
simulator highly configurable interface, i.e., setting timings or energy needed to perform 
an operation. In this way, we can compare the effect on performance or power 
consumption compared with other state of the art technologies. 

 

 

Figure 8: Overview of NVMain Architecture. Only one memory controller with one 
channel is shown [54]. 
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4.2 NVMinterface 
NVMInterface is a gem5 component which allows instantiation and accurate simulation 
of NVM memories. It is instantiated in gem5 as any other memory controller, and it is 
assumed that a MemCtrl object with a NVM Interface will be used. Its main difference 
with respect to NVMain is that it is readily available in gem5 version 22.0.0.2, and it is 
designed to simulate the main system memory. To that end, it provides different 
configurable parameters as well as statistics to accurately model the device and collect 
metrics of its use. For example, some of these metrics include read or write bursts per 
bank, which only make sense in the context of DRAM but not for caches. 

Although NVMInterface is already supported in gem5 and can be configured as the 
memory type of the system, an effort has been made to test it with some configurations 
like those that may be required within the project, to ensure the component is ready to 
be used. To that end, different configurations and instantiation contexts have been 
explored: 

• Different configurations of NVM were tested, with varying number of ranks. 
• The component can be used directly as a memory controller or as part of a 

HybridMemory component, where it could be instantiated alone or with a 
DRAMInterface if needed. 

4.3 Approaches for Operating PCM 
Memories and related modeling 

PCM-based memories have attracted considerable interest over the last two decades 
due to the several advantages that they offer such as high switching speeds (order of ns 
or lower), medium-to-high endurance, high re-programmability (>= 106), good scalability 
and integration with CMOS compared to flash memories [56]. Initially used for rewritable 
DVDs, they have been considered more recently in integrated photonic applications 
ranging from in-memory and neuromorphic computing to pure photonic DRAM [57] [58] 
[59]. 

One of the key advantages of an optical read-out approach consists of being able to 
achieve very low latency, but also very low optical signals (limited by SNR and 
photodetector sensitivities) which translates into overall low-power consumption. 
However, the writing phase poses a series of trade-offs from an architectural point of 
view to operate PCM memories. 

In the next two sections, we will discuss two different ways to operate PCM memories in 
terms of the writing phase, i.e., optically and electrically, while we will focus solely on an 
optical read-out approach. Modeling strategies will also be discussed. 
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4.3.1 Optical writing approach 

In an optical writing approach, the PCM patch located above the photonic waveguide is 
stimulated by short optical pulses which gradually change its crystalline (and 
amorphous) fraction, thereby encoding data directly in its phase.  

Depending on the SNR that can be achieved from a writing as well as reading point of 
view, a certain bit resolution will be achieved. While this approach is the most promising 
for rapidly writing PCM memories (below ns for good heat evacuation and suitable 
material properties), it comes with 2 major limitations: (i) the optical waveguides for read 
and write operations shall be separated – this is related to the fact that optical writing 
signals shall not modify multiple memory elements and (ii) to achieve low optical losses 
different waveguide materials might need to be used e.g., Si (for read-out signals) versus 
SiN (for writing signals) due to two-photon absorption effects which may take place for 
high-power pulses. Other strategies relying on crossbar architectures leveraging optical 
crossing geometries will also be explored for matrix-matrix multiplication.  

4.3.2 Electrical writing approach 

Another approach that is under investigation concerns the possibility of writing the PCM 
memories with short electrical pulses, similarly to what is done in D4.1 for the 
neuromorphic architectures, to set the weights of the accelerator. While this approach 
does not require to increase the number of waveguides, it does increase the number of 
routing wires. However, given the possibility of using multiple interconnect layers for 
wiring, this approach simplifies the routing schemes that are required. However, it 
comes with a major caveat that electrical contacts cannot come too close to an optical 
device. Therefore, the writing speed is limited by the thermal constant of the dielectric 
distribution around the Si waveguide, which is hundreds of ns from D3.4. Power 
consumption is also increased in this scenario due to the absence of local heating of the 
PCM patch as instead the case for the optical writing scenario. 

4.3.3 Benchmarking strategies and modeling 

To benchmark the PCM memories, we will be looking at how they perform under 
classical tasks such as matrix-matrix multiplication in the optical domain where, e.g., the 
PCM elements store the matrix elements for one of the matrices to multiply, while the 
other one is encoded in the incoming optical signals in a crossbar architecture. 

We will also investigate typical read/write operations for memories under real 
computing flow scenarios. Parameters such as power consumption, latency, 
speed/throughput and distributions will be obtained to provide input to the gem5 
platform. 
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To extract these parameters, compact behavioral models such as the one presented in 
D3.4 based on a transfer matrix approach for PCM-based Mach-Zehnder interferometers 
(written by electrical pulses) are currently being explored. 

4.4 Integration of Different Approaches in 
the Simulator – Future Directions 

As described in the previous section, PCM memories have a very different nature. This 
presents a challenge in their integration in the simulator, which is required to 
accommodate these different types. The use of PCM within the simulator is a two-
dimensional problem: on the physical side, PCM memories may have very different 
features, including differences in voltages, operation timing, among others. On the 
purpose side, PCM memories may be used as part of the processor caches, which 
present a particular set of challenges and simulation requirements, and as the DRAM, 
which may present different challenges and requirements. 

To solve the physical challenge, we have worked on collecting a list of configurable 
parameters for the simulator components. This task has resulted in analyzing a series of 
NVMain configuration files, understanding the meaning of the configurable parameters, 
and classifying them into a category. To perform the classification, we have developed a 
taxonomy where each parameter is classified as one of the following classes: General 
Memory, DRAM Energy, Energy parameters, General Geometry parameters, Endurance, 
Power Down, Simulation Control, Device Timing, Memory Controller, and MLC. 

Regarding the two different purposes of PCM memories, we have identified and 
described two gem5 components which perfectly match the intended purposes of the 
PCM. On the one hand, NVMain covers its use as cache memories, while NVMInterface 
covers its use as DRAM memory. On the other hand, the configuration parameters and 
the statistics generated by each component match their purpose and provide a flexible 
way of integrating the PCM into different levels of the memory hierarchy of the 
simulator. 
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5. Hardware/Software Security 
Models and interfaces  

This deliverable section outlines the progress and collaborative efforts dedicated to 
modeling Hardware Security Models within the project's first year. The structure is 
divided into two key subsections, each addressing critical aspects of our endeavors: 
Hardware Security Primitives and Simulation Modeling Approach/Decisions. 

5.1 Hardware Security Primitives 
(definition, interface, basic blocks) 

In this subsection, we explore the integral components of hardware security primitives, 
focusing on their definition, interface, and the basic blocks that constitute the 
foundation of our project. 

• Definition: We delve into the conceptual underpinnings of PUFs, highlighting 
their significance in enhancing hardware security through their inherent 
unpredictability and uniqueness. This part clearly explains PUFs' role and 
potential applications in cryptographic systems. 

• Interface: The interface design ensures that PUFs can seamlessly integrate with 
conventional digital devices. This involves detailing the interaction protocols 
between the PUFs and other system components, particularly emphasizing 
compatibility with the gem5 simulator for effective simulation and integration. 

• Basic Blocks: Identifying and modeling the basic blocks of PUFs form the core of 
our project. This includes the detailed exploration of the photonic components of 
PUFs, outlining the specific modeling requirements essential for their integration 
into digital systems and ensuring their functional efficacy in a simulated 
environment. 

NEUROPULS comprises several hardware modules, with the Application-Specific 
Integrated Circuit (ASIC) playing a pivotal role. The ASIC serves dual functions as the 
primary AI processor, handling complex computations, and as a Physically Unclonable 
Function (PUF) for bolstering security in various applications. This makes it the primary 
hardware security primitive of the NEUROPULS project. The ASIC's intricate design 
incorporates, on the PUF side, essential components such as the Photonic Circuit (and 
with Modulators, Photodetectors, and Power Drivers) and a set of Electrical components, 
contributing to its overall functionality. This is depicted in Figure 9. 
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Precise modeling should include all in the communication part as foreseen in D4.3 and 
D6.1, covering critical elements like the Analog-to-Digital Converter (ADC), Digital-to-
Analog Converter (DAC) along with all the photonic components. In real hardware, these 
components work seamlessly in tandem, facilitating efficient communication and 
collaboration between the main processor and the ASIC. The high-level model definition 
starts by identifying the necessary modules: 

• PIC (Photonic PUF part): It will be the primary processing unit for generating the 
CPRs. The ASIC contains: 

o PUF architecture will mimic the architecture described in D4.3 regarding 
single components and their connection, serving as a source of natural 
randomness. The main components will be a multi-mode interference 
(MMI) device and resonators modeled with a floating-point single precision 
for maximum computational speed. While the modeling follows the 
mathematics behind each component behavior, requiring some extra time 
for computation, this modeling approach paves the way for accurate 
accounting of what contributes to a PUF creation in the real hardware. 
Moreover, it allows for precise time and power estimation. This architecture 
will be complemented with a purely functional component in which the 
users will be required to fill a table of known CRPs for faster emulation of 
the functionality without carrying an accurate time and power estimation. 

Figure 9: Hardware Description of NEUROPULS PUF Components. 
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o Modulator: it will model the behavior of devices that control the intensity 
of laser light, influencing data transmission through variations in light 
amplitude. As accurate modeling will be provided here, in floating point 
precision, it will be feasible to explore later if variations in modulator 
behavior introduce additional sources of randomness, contributing to the 
uniqueness of the PUF signatures as it does in the real hardware. 

o Photodetector: it will model the devices that measure the power of light, 
converting optical signals into electrical signals. This modeling follows a 
pure analog flow, assessing the light power at the end of the photonic 
circuit, capturing and converting output data.  

• Power Drivers: The power drivers are required to model the components that 
change the voltage within the photonic circuit, effectively programming weights 
in the circuit. They will be primarily necessary for the accelerator modeling to 
decouple programming and inference precisely. Still, they might serve the PUF 
modeling to explore the future adoption of the accelerator itself as a source of 
CRPs. 

• GPIO Interface: Modeling the GPIO interface is crucial for time-accurate 
modeling of the general photonic interaction as it accounts for a lower time 
frequency in the programming of the Photonic PIC. Without it, a general model 
of a DMA transfer will not be able to distinguish between the operation modes 
(inference, programming, operation selection, CRPs request, etc.) operating the 
correct time and power modeling. 

• DAC (Digital-to-Analog Converter): The DAC converts digital signals to analog 
signals for input to laser modulators. In the context of the PUF, the modulation of 
laser light intensity, controlled by the DAC, contributes to introducing variability 
in the Photonic Circuit, a key aspect of PUF functionality. 

• ADC (Analog-to-Digital Converter): This component is vital for the PUF as it 
converts analog signals from photodetectors to digital signals for processing. The 
analog signals from the photodetectors, capturing variations in light power at the 
end of the photonic circuit (part of the PUF), are translated into digital form by the 
ADC. This digital data is then used for further processing, contributing to the 
overall PUF functionality. 

• TIA (Transimpedance amplifier): The TIA needs to convert from the current signal 
(photocurrent) of the photodetector to a suitable voltage which optimally spans 
the dynamic range of the ADC. 

• Electric Weak PUF: As described in Figure 9, the complete PUF architecture at 
this stage of the project couples the Photonic PUFs with an Electric weak PUF. 
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5.2 Simulation Modeling Approach & 
Design Decisions  

This subsection addresses the strategies and considerations underlying our simulation 
modeling approach on gem5-MARVEL, including the pivotal design decisions that guide 
our simulation efforts. 

• Modeling Approach: A comprehensive review of the simulation tools and 
methodologies employed to model PUFs is provided. This includes examining the 
capabilities and limitations of current simulation tools to accurately replicate the 
complex behavior and security features of PUFs. 

• Design Decisions: Critical design decisions are highlighted, focusing on the 
functional requirements for effectively exploiting PUFs within simulated 
environments. This includes the integration of PUFs with standard digital devices 
and the adaptation of simulation models to support ongoing developments in 
security architecture. 

• Integration and Functional Requirements: The integration of PUFs into broader 
system architectures is discussed alongside the functional requirements that 
guide this process. This involves detailing the efforts to synchronize the physical 
device modeling with digital simulation platforms, ensuring that the PUFs' 
unique attributes are effectively captured and utilized within the simulation 
framework. 

5.2.1 ASIC Modeling 

The foundation of ASIC modeling relies on using C++, primarily due to its pivotal role as 
the principal language in the gem5-Marvel simulation framework. Throughout this 
process, each module of the ASIC is crafted and replicated in C++ to closely emulate the 
underlying hardware components and replicate their physical characteristics. 

The hardware modules within the ASIC model reproduce the functional behavior of each 
component, enabling the accurate modeling of data flow through the ASIC.  Those 
components are not only functional replications; they also simulate material variations. 
This feature significantly contributes to achieving a more comprehensive and realistic 
representation of the hardware, a crucial aspect in security applications where the 
robustness of the ASIC board's embedded Physical Unclonable Function (PUF) holds 
paramount importance. The basic element of the Photonic PUF is shown in Figure 10. 
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Components and Current State: 

• Photonic Integrated Circuit (PIC): 
o Optical Modulators: To be implemented. 
o MMI: (Multimode Interference): Implemented frequency analysis using 

scattering parameters for characterization. The model also includes other 
parameters enabling the simulation of physical imperfections in the device, 
such as imbalances and losses. Incorporation of time domain analysis is 
planned. 

o Photodetectors: Developed to remove nonlinearities, currently computing 
the optical power of the input signal. 

o Micro-ring Resonators: Yet to be developed. 
o Photonic Waveguides: Implemented for frequency analysis. Incorporation 

of time domain analysis is planned.  

Other Components to be Implemented: 

• Electric PUF/ SRAM weak PUF: To be developed and studied 
• TIA 
• ADC 
• DAC 
• Power drivers 
• GPIO 

 

The development and incorporation of these components are essential for achieving a 
comprehensive ASIC model compatible with gem5-MARVEL. Further efforts will be 
directed towards implementing missing components, integrating time domain analysis, 
and exploring the functionality and performance of additional modules such as the 
Electric PUF, TIA, ADC, DAC, power drivers, and GPIO interface. These endeavors are 
crucial for advancing the simulation capabilities and ensuring the accuracy and 
reliability of the ASIC model within the gem5-Marvel framework. 

Figure 10: NEUROPULS Photonic PUF [55]. 
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5.3 Interfacing  
NEUROPULS hinges on two core components: the ASIC/PUF and the RISC-V ecosystem. 
The crux of the matter lies in establishing a smooth data flow between these 
components, necessitating the creation of interfaces. These interfaces are split into 
Hardware and Software, with Hardware being physically integrated into the device and 
Software acting as the intermediary between the user/application and the Accelerator. 
Hardware interfaces are the tangible connections within the device, crucial for direct 
communication between the ASIC/PUF and the system. 

• Hardware Interfaces: They are discussed in the security model primitives.  
• Software interfaces: 

o User Interface: Currently analyzing how applications will be launched, 
either in a bare-metal environment or through an Operating System. 

o PUF and the photonic accelerator Interface: Planned to be achieved 
through memory mapping, wherein specific memory portions will be 
designated for the dedicated parts required for the PUF and the photonic 
accelerator. 

o Direct Memory Access (DMA): Given that communication with the 
accelerator uses memory mapping, the role of DMA is essential for reading 
all configurations provided by the user and then transferring them to the 
Application-Specific Integrated Circuit (ASIC) without the intervention of 
the RISC-V microprocessor. 

o Security Interfaces: NEUROPULS aims to provide encryption mechanisms 
(e.g., AES), Key Management Systems (KMS), Hash generators (e.g., SHA-2), 
Message Authentication (e.g. HMAC), and other security-related services. 
This will complement the PUFs with a proper NEUROPULS Root-of-Trust 
(RoT), as depicted in Figure 11 At this stage, such RoT is the target 
architecture to support the protocols described later. On top of the actual 
PUFs modeling, they can be built as pure software components, e.g., C 
libraries exploiting the PUFs by DMA protocol access, or they can be further 
hardware blocks simulated in gem5-MARVEL. 
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5.4 Protocols for Mutual Authentication, 
Software Attestation and Encryption 

5.4.1 Mutual authentication 

Authentication is the first step in secure communication, which consists of verifying the 
identity of a participant (e.g., a device) before exchanging sensitive data with another 
participant. The context of NEUROPULS includes two main roles: the device to be verified 
and an external entity acting as the verifier. This context imposes two requirements: First, 
the authentication shall be mutual, i.e., considering that sensitive data travel in both 
directions, the device and the verifier should verify each other’s identity. Second, the 
authentication process shall be lightweight because the resources on the device are 
constrained. 

Existing authentication strategies based on PUFs require the verifier to store a large 
database of CRPs for each device, as first described in seminal works on PUFs [3], [4] and 
detailed by Suh et al. [5], or to exploit heavier protocols [6], [7]. However, to meet the 
lightweight requirement, we decided to adopt a different strategy, that is, HSC-IoT, the 
authentication procedure proposed by Hossain et al. [8]. Their idea is to use only a single 
CRP as a shared secret between the device and the verifier to support mutual 
authentication and to update it after each use with a fresh CRP. 

Figure 11: High-level preliminary NEUROPULS 
Root-of-Trust components. 
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Practically, the first CRP is shared at manufacturing time and is meant to support the 
first actual authentication session. At each actual authentication session, the device uses 
a fresh CRP that is based on the response of the previously used CRP. The new response 
is sent to the verifier in encrypted form and, if mutual authentication succeeds, the 
current CRP is updated on both the device and the verifier. 

Figure 12 shows a UML sequence diagram showing messages exchanged between the 
device and the verifier according to the mutual authentication protocol. 

 

The protocol starts with the authentication request from the verifier. The device derives 
the new challenge ci+1 from the current response ri, using it as a seed for a pseudo-
random number generation (RNG) function known to both participants, ci+1 = RNG(ri). 
The device computes a message m containing the new response ri+1, XORed with the 
current response ri. In the figure, the operator ˆ denotes the XOR operation and || 
denotes concatenation. The message may also contain proof of the integrity of the 
software, such as the hash of the memory H and a clock count CC that represents the 
time needed to perform a given task. The message can contain a nonce N for freshness. 
This message m is then sent to the verifier along with its MAC signature, calculated using 
the MAC(data, key) function, whose first argument is the data to sign and the second is 
the key, ri in this case. Now, the verifier can authenticate the device by checking the 
message signature using the secret ri. The new response ri+1 is derived from m and stored 
in the verifier to be used as a shared secret in the next authentication session. Finally, the 

Figure 12: Mutual authentication protocol between the device and 
the verifier. 
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verifier authenticates the device by demonstrating that it knows the new secret ri+1, 
which is used to sign ci+1 (generated using ri+1) through the MAC function again. 

This protocol only needs one CRP to be known by the verifier at any point, which is more 
scalable than other solutions that require a large database of CRPs. In addition, CRPs are 
kept confidential because they are never exchanged in clear text. Although this protocol 
is very lightweight, it is designed to resist many attacks, as discussed by Hossain et al. [8]. 

5.4.2 Software attestation 

Remote software attestation validates the integrity status of remote computing devices 
without relying on secure hardware components such as Trusted Platform Modules 
(TPMs). Such specialized components are often unsuitable for devices with limited 
resources [9], [10]. This approach enables remote systems to detect malicious or 
unintended changes in the firmware, software, or hardware that operates on these 
devices. 

Attestation mechanisms generally send a hash of the device’s memory to the verifier to 
prove that the device is not compromised [11]. An example of this is given in the previous 
section; during mutual authentication, the algorithm can include a hash of the memory, 
which provides some proof of the device’s integrity. In this section, we describe a more 
powerful approach that, however, imposes stronger assumptions, i.e., it leverages an 
ideally reliable strong PUF and on a PUF model available to the verifier. To avoid attacks 
where a device hides its compromised memory regions from verification (e.g., by moving 
these regions around while the algorithm hashes the uncompromised memory), 
attestation protocols often employ temporal constraints that guarantee the unfeasibility 
of these attacks [12]. An important part of these protocols is the root of trust, a part of the 
system proven not to be compromised, on which the protocol can base its operations. 
Without being able to use secure hardware modules (i.e., TPMs) as a root of trust, many 
modern protocols have started adopting PUFs as an alternative. In our framework, we 
leverage the photonic PUF (pPUF) embedded in the neuromorphic accelerator to 
generate many CRPs that can then be used to hash different areas of the device’s 
memory. 

The verifier starts the attestation by crafting a message, the attestation request, that 
contains a timestamp t and a challenge c1. The message is then sent to the device, which 
then promptly starts the attestation process by using the issued challenge to compute 
a response r1 in the pPUF. The response is combined with the timestamp as the seed for 
an RNG that generates the random walk-in memory: m1,...,mn = RNG(r1 + t). A secure hash 
algorithm is then used with the initial chunk of memory m1 on the device and r1, 
generating the first hash h1 = HASH(m1, r1), while r1 is used simultaneously as the next 
challenge for pPUF, as r1 = pPUF(r1). All subsequent hashes depend on the previously 
calculated ones: hi+1 = HASH(mi+1, ri+1, hi). The inherent speed of the pPUF (at least 5 Gb/s) 
guarantees that the constant challenge and response generation never slows down the 
protocol, so the temporal constraints of our approach can be stricter than those found 
in previous work. After exhausting all memory regions, the final hash, hn, is sent to the 
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verifier. This protocol minimizes the network load by having a very small footprint in both 
the attestation initiation and its finalization, which allows our temporal constraints to be 
mostly focused on the speed of the iterative hash function. The verifier has a copy of the 
uncompromised device memory and a model of the pPUF, so it can start to calculate hn 
right after generating the attestation request. After receiving hn from the device, the 
verifier checks that its value is correct and that the attestation did not exceed its 
temporal constraints; if both requirements are satisfied, the attestation is successful. 
Otherwise, a new request is issued, and the protocol restarts with a new timestamp and 
challenge. 

5.4.3 Neural network configuration and data 
encryption 

Another important security requirement is the confidentiality of the actual data 
processed by the accelerator and the confidentiality of the neural network configuration. 
To meet this confidentiality requirement, encryption encodes the data in all 
communications with external parties and all the software running on the device. The 
NN configuration, the input data to the device, and the computation output are 
encrypted using the secret keys described in Section II. This key is never exposed to the 
software layer, but encryption and decryption occur on the hardware in the 
implementation of the security primitives shown here: 

 

Function name   Parameters Results 
load_network ciphered_network   
execute_network ciphered_input ciphered_output 

 

load_network receives the neural network configuration in encrypted form. The 
configuration is decrypted in hardware and loaded in the accelerator. execute_network 
takes the input as a decrypted parameter and fed to the accelerator. Then, the 
computation result is encrypted and returned by this function. As specified by the 
function signatures, data are never exposed in plaintext to the software. Data are 
decrypted internally by the device using primitives that never leave plaintext in the 
memory after execution, thus preserving confidentiality even against an internal 
attacker capable of reading the RAM. 
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6. Conclusion: Towards Future 
Innovations  

The NEUROPULS full system simulation infrastructure for heterogeneous 
electronic/photonic systems provides a dynamic environment for the project partners, 
and generally for researchers and engineers, to iterate through various design iterations 
rapidly. By offering a simulation platform based on state-of-the-art microarchitecture-
level simulators, such as gem5, for simulating complete computing systems, including 
neuromorphic accelerators and security primitives, the NEUROPULS infrastructure will 
become a playground for future innovation. NEUROPULS partners and researchers can 
experiment with novel architectures, algorithms, and configurations.  

In the realm of heterogeneous computing systems, in which diverse components need 
to seamlessly interact, the NEUROPULS simulation infrastructure aims to make 
informed decisions at the system level. It allows for the exploration of intricate design 
spaces, facilitating a more in-depth understanding of how different components may 
impact the overall system performance and security. This knowledge is invaluable for 
architects and engineers seeking to optimize systems for specific use cases or 
performance criteria. 
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