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Interac�on between transcrip�on factors and nucleic acids plays crucial role in cells. Understanding the mechanism 
of protein-DNA interac�on and its mutual dynamics gives a broad overview of its role in various biological processes. 
Structural proteomics has undergone a remarkable growth in recent years, which had a huge impact in the field 
of structural and molecular biology. Structural proteomics methods offer the possibility to answer the ques�ons related to 
structure and dynamics of protein complexes. Beyond well-established MS-based methods, radical covalent labelling has 
evolved as an effec�ve analy�cal tool for characteriza�on of such complexes. 

INTRODUCTION

 

Model protein: We used a DNA binding model consisted of FOXO4 protein and its cognate Insulin response element, IRE.
Complex formation: To form a complex, FOXO4-DBD and IRE were mixed in molar ratio 1:1. Native electrophoresis ( ) and Figure 1a
native nano-electrospray ionization ( ) were used to confirm its formation.Figure 1b
FPOP setup: Both protein and dsDNA were submitted to FPOP alone and in a complex. FPOP was performed in 150 mM ammonium 
acetate buffer, pH 6.8 . To modify the apo/holo forms (  ), a KrF excimer laser (Coherent Inc., USA) was used to dissociate H O  2 2Figure 1c
(10  mM).
Mass spectrometry: (  ) Collected samples were split for bottom-up and top-down analyses. Modified AA residues were Figure 2
identified in DDA mode and extent of modification was calculated from MS trace (timsToF Pro, Bruker Daltonics). The DNA damage 
initiated by hydroxyl radicals was evaluated by DIA analysis (solariX XR 15T, Bruker Daltonics).

Analysis of oxidized samples

Figure 2: Intact mass spectra of +14 charge state of FOXO4-DBD (black) and its respective oxidized apo ( ) and holo ( ) forms after laser blue  yellow
irradiation (a). Bottom-up analysis comprised of sample digestion with Trypsin and LysC followed by identification/quantification by LC-MS/MS (b). 
Quantitative analysis of DNA fragments was done using LC-MS analysis in DIA mode (c). 
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Figure 1: Optimization of the assembly of FOXO4-DBD/IRE 
complex using native electrophoresis and GelRed® and CBB R-250 
staining ( ). Confirmation of FOXO4-DBD/IRE complex formationa
by native electrospray experiment ( ). Experimental FPOP setup ( ). b c

Bottom-up analysis

Analysis of IRE fragments

CONCLUSION

Data were resolved at a single amino acid resolution using bottom-up approach (  ). The DNA damage initiated by hydroxyl Figure 3
radical attack was examine to obtain information about ( ). the damage of DNA Figure 4 , 4ba

Results, which were visualized on FOXO4/IRE structural model (based on 3L2C), demonstrate the potential of FPOP 
as a technique for surface analysis of protein/DNA complexes, ( ). Figure 5

Figure 4: Extent of oxidative damage determined by quantification of individual DNA fragments separated in LC-MS analysis.  
quantified DNA fragments originated from forward strand (a), quantified DNA fragments originated from reverse strand (b) 
for both apo ( ) and holo ( ) forms. IRE, blue FOXO-IRE, yellow

Figure 3: Quantification of modified residues detected by bottom-up analysis.
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Visualization on a structural model 

Figure 5:  Changes detected on both FOXO4 
and IRE are visualized in an X-ray structural 
model of FOXO4/IRE (based on 3L2C).
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