
a brief reminder on complex numbers.
complex numbers are central to Fourier analysis, and their understanding is needed to fully commprehend the beauty of Fourier analysis

Real numbers are regular numbers, going from  to  through -12.5, 0, 1, , and every number you might want to use. They are said to belong to
, the set of all real numbers,  can be seen as a line, going from  to .

If Reals are on a line, Complex numbers are on a plane. As any plane, the coordinates are defined on two axes, the horizontal axis is the  line, the
vertical one is the Imaginary axis, also holding real numbers, and labeled with . This plane is called  the complex plane.

A complex number  (a point in this plane) is thus described with two numbers,  and :

 is the real part, and  the imaginary part.

The position of the complex point  can also be described by its module (the distance to the center)

and the angle with the horizontal axis, called the argument, usually noted with a greek letter:

It is defined only between  as any other angle.

A complex number is fully determined by  and , as well as by its modulus and argument. This is noted using the Euler notation:

see also: Wikipedia:Complex_plane (https://en.wikipedia.org/wiki/Complex_plane)
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Populating the interactive namespace from numpy and matplotlib

# let's draw this
%pylab inline
figure(figsize=(5,5))
plot([-3,3],[0,0],':k') # the real axis
plot([0,0],[-3,3],':k') # the imaginary axis
scatter([1,0,-1,0],[0,1,0,-1])
text(1,0.15,'1')
text(-1,0.15,'-1')
text(0.15,1,'i')
text(0.15,-1,'-i')
title('the complex plane $\mathbb{C}$')
z = 1.5 + 2j #  i is noted j in python
scatter(z.real, z.imag)
plot([0,z.real],[0,z.imag],'--k')
text(1,2.2,'z = %s'%(str(z)));
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The supplement to a simple cartesian plane, is that you can do arithmetic with complex numbers. Complex numbers can be added and multiplied, they
form an algebra.

The addition operation is simply the addition of both components. The multiplication of two complex numbers (noted here ) gives a new complex
number,

If you work out the equations in sine and cosine, you will find that the modulus have been multiplied and the arguments added. This explains the simplicity
of the Euler notation:

Adding arguments (angles) is a rotation, so multiplication by a complex number is a dilatation (by the modulus - just like multiplication by a real number )
and a rotation (by the argument).

Multiplication by a complex numbers of modulus 1.0 is thus just a rotation by . Those special numbers are located on the unity circle (of radius 1.0 and
centered on {0,0}), and have a very special role.

A very special number is  equal to , the basis for the imaginary numbers. It corresponds to a rotation by  Of course multiplying  by itself, (rotating
it by ) you end-up on the horizontal axis, backward. This is the well known definition:

or the mind boggling equation mixing  and  :
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In particular, the points located at  are the  roots of 1, as any of these, raised to the power  is equal to 1.e2iπ
k
N N th N

# let's show the effect of multiplication
figure(figsize=(5,4))
plot([-3,3],[0,0],':k') # the real axis
plot([0,0],[-1,3],':k') # the imaginary axis
scatter([1,0],[0,1])
text(1,-0.25,'1')
text(-0.2,1,'i')
title('the complex plane $\mathbb{C}$')
z1 = 1.5 +2j
z2 = 0.3 + 1.2j
z1_z2 = z1*z2
for nz in ('z1','z2','z1_z2'):

z = eval(nz)
scatter(z.real,z.imag)
plot([0,z.real],[0,z.imag],'--k')
text(z.real-0.5,z.imag+0.1,'%s = %s'%(nz,str(z)));
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A Jupyter widget could not be displayed because the widget state could not be found. This could happen if the kernel storing the widget is no longer
available, or if the widget state was not saved in the notebook. You may be able to create the widget by running the appropriate cells.

#let's show the roots of 1.0 on the unity circle
f,(ax1,ax2) = subplots(ncols=2,figsize=(6.6,3))
t = linspace(0,2*pi,100)
for N,ax in ((4,ax1),(24,ax2)):    # for each figure, with different N

ax.plot([-1.3,1.3],[0,0],':k') # the real axis
ax.plot([0,0],[-1.3,1.3],':k') # the imaginary axis
ax.plot(cos(t),sin(t),'--k')   # the unity circle
k = arange(0,N)          # compute the roots
z = exp(2j * pi * k/N)         # e^(2 i pi k / N)
ax.scatter(z.real, z.imag, c='r',edgecolors='r',label='N=%d'%N)   # draw roots

    [ ax.plot([0,zk.real],[0,zk.imag],'r') for zk in z]
ax.legend()
ax.set_axis_off()

f.text(0.25,1,'showing the $N^{th}$ roots of 1 on the unity circle');

# let's make it interactive
def Nroot(k=1,N=8):

f,(ax) = subplots(figsize=(3,3))
t = linspace(0,2*pi,100)
ax.plot([-1.3,1.3],[0,0],':k') # the real axis
ax.plot([0,0],[-1.3,1.3],':k') # the imaginary axis
ax.plot(cos(t),sin(t),'--k')   # the unity circle
z = exp(2j * pi /N)         # e^(2 i pi / N)
zk = z**k
ax.scatter(zk.real, zk.imag, c='r',edgecolors='r')   # draw roots
ax.plot([0,zk.real],[0,zk.imag],'r')
ax.set_axis_off()
ax.set_title(r'showing $e^{2i\pi %d/%d}$ on the unity circle'%(k,N));

from ipywidgets import interactive
interactive(Nroot,k=(0,24),N=(2,48))
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