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Definitions, basic properties

Time / Frequency
One example of the relation between time and frequencies - as observed in nature

The pressure wave (top) is a function of time.
It enters the ear and makes the ear-drum vibrate with the same pattern
this creates a standing wave in the cochlea, this little organ in the inner ear looking like a snail.
pressure nodes are located along the cochlea spiral, with their position depending on the frequency

 a mechanical Fourier transform !
hair cells along the cochlea detect these nodes, and transmit the frequency information to the brain which recognizes the frequency patterns which
characterize sound formants (the phonetic primitives), and understand the word.

The phonetic pattern is somehow the time-dependent Fourier transform of the inital pressure wave.

They both carry somehow the same information, but in a very different way.

⇒



Fourier Transform Definition
Fourier Transform is formally defined on continuous functions:

for a function  defined from  to  (or more precisely from  to ), the Fourier transform of  is another function  (from  to ) defined as:

 id Fourier transformed into 

 and  represent two different quantities.

There are called reciproqual quantitites, and can be found in many domains

 : time (sec)  : frequency (Hz)

 : space (Å)  : spacial frequency (Å )

 : wavelength ( )  : spacial frequency ( )

etc...

a brief reminder on complex numbers.
complex numbers are central to Fourier analysis, and their understanding is needed to fully comprehend the beauty of Fourier analysis

Real numbers are regular numbers, going from  to  through every number you might want to use. They are said to belong to , the set of all real
numbers,  can be seen as a line, going from  to .

If Reals are on a line, Complex numbers are on a plane. As any plane, the coordinates are defined on two axes, the horizontal axis is the  line, the
vertical one is the Imaginary axis, also holding real numbers, and labeled with . This plane is called  the complex plane.

A complex number  (a point in this plane) is thus described with two numbers,  and :

 is the real part, and  the imaginary part.

The position of the complex point  can also be described by its module (the distance to the center)

and the angle with the horizontal axis, called the argument, usually noted with a greek letter:

It is defined only between  as any other angle.

A complex number is fully determined by  and , as well as by its modulus and argument. This is noted using the Euler notation:

Complex numbers can be added and multiplied, they form an algebra. You have a more detailed (in interactive) presentation in the complex_reminder
(complex_reminder.ipynb) file.

see also: Wikipedia:Complex_plane (https://en.wikipedia.org/wiki/Complex_plane)

in the computer
Fourier transform (or FT) is defined as a transformation of continuous functions  from  to ), they have to be integrable over , and can be
extended to the limit to distributions which somehow drops this later condition.

What we're doing in this course is performed on a computer, and computers cannot deal with continuous functions they can only handle series of
numbers. In consequence, the Fourier transform implememted in the computer is very different, it is actually another transform, called digital Fourier
transform (or DFT), perfectly defined in mathematical terms, but very different in its form, that applies to finite series of values .

DFT does not deal with continuous functions, but rather with series  and , instead of  and . The DFT is defined as:

(if you have read the complex_reminder (complex_reminder.ipynb) you recognize  as the  roots of 1 here.)

In the implementation of DFT in the computer, where we are going to use a vector of values x[k]  as a representation of the series .

In the computer, DFT transforms thus a vector into another vector, as it is a linear operation, it can be represented by a (usually square) matrix, and would
take a burden proportional to  to compute for a vector of length . Thanks to Cooley & Tuckey(1) there is an very efficient algorithm that does it in

 operations provided  is a power of two ( ), and which is called Fast Fourier transform (or FFT). FFT and DFT are strictly equivalent, as
there are now effecient implementations that work well for nearly all  values, however FFT is much faster than the regular matrix operation.

DFT and FT share so many properties in common that they will be considered as one same thing in the course*

1) Cooley, J., & Tukey, J. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19 (90), 297–301.
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Fourier transform Properties
FT is linear

FT is inversible

has symmetry properties

even function  real function

real function  even function

odd function  imaginary function

imaginary function  odd function

causal function  Bayard-Bode conditions
causal is such as  if 
real  and imaginary  parts and Hilbert transform of each other

conserves the energy (with :

conserves the area:
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small simulation, to show the efficiency of the FFT algorithm
Comparing a regular matrix approach ( FT ) to the fast algorithm ( FFT )

In [1]:

Populating the interactive namespace from numpy and matplotlib

%pylab inline
P = np.arange(1,20)               # power of 2 
N = 1024*(2**P)                 # size of vectors, starting at 1k points
base = 1e-6/(N[0]**2)           # assume 1µsec processing for 1k vector ( my laptop )
plt.loglog(N, base*(N**2), label='DFT')          # draw both
plt.loglog(N, 2*1024*base*N*P, label='FFT')
# some annotations
plt.title('processing time simulation'); plt.xlabel('Size of vector'); plt.legend(loc=4)
plt.plot(N, [1E-3]*19, '--k'); plt.text(2*1024, 2E-3, '1 msec')
plt.plot(N, [1]*19, '--k');    plt.text(2*1024, 2, '1 sec')
plt.plot(N, [60]*19, '--k');   plt.text(2*1024, 120, '1 min')
plt.plot(N, [3600]*19, '--k'); plt.text(2*1024, 2*3600, '1 hour');
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