
9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 1/26

In [1]:

executed in 333ms, finished 07:03:59 2021-09-29

In [2]:

executed in 3.40s, finished 07:04:02 2021-09-29

Autosaving every 60 seconds

 ========================

 SPIKE

 ========================

 Version : 0.99.29

 Date : 20-09-2021

 Revision Id : 529

 ========================

*** zoom3D not loaded ***

plugins loaded:

Fitter, Linear_prediction, Peaks, bcorr, fastclean, gaussenh, re

m_ridge, sane, sg, test, urQRd,

plugins loaded:

msapmin,

spike.plugins.report() for a short description of each plugins

spike.plugins.report('module_name') for complete documentation on one

plugin

plugins loaded:

FTMS_calib, PhaseMS, diagonal_2DMS,

*** PALMA not loaded ***

plugins loaded:

Bruker_NMR_FT, Bucketing, Integrate, apmin,

%matplotlib inline

%autosave 60

#import spike

#from spike.Interactive import INTER as I

#I.hidecode(message="")

import matplotlib

import matplotlib.pyplot as plt

from matplotlib.pyplot import scatter, plot, figure, text, title, xlabel, ylabel, s

import numpy as np

from numpy import exp, cos, sin, arctan2, pi, linspace, arange

import spike

from spike.File import BrukerMS as bkMS

from ipywidgets import Button, interactive, interact, FloatSlider, IntSlider

import ipywidgets as widgets

from IPython.display import display, HTML, Javascript, Markdown, Image

matplotlib.style.use("fivethirtyeight")

for i in ('font.size','axes.labelsize','legend.fontsize','legend.title_fontsize'):

 matplotlib.rcParams[i]=24

for i in ('xtick.labelsize', 'ytick.labelsize'):

 matplotlib.rcParams[i]=18

#matplotlib.style.available

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 2/26

2. The basic FTICR experiment

2nd-AUS-FTICR

Marc-André Delsuc - Prague 26-30 Sept 2021

This work is licensed under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/)

a developed content of this part can be found on github.com/delsuc
(https://github.com/delsuc/Fourier_Transform/blob/master/Definition_Properties.ipynb)

classical processing
We are going to go slowly through the steps that produced that nice spectrum earlier.

We will use SPIKE a processing library written in python, able to handle all sorts of FT spectrometries

SPIKE is freely available on github : github.com/spike-project/spike (https://github.com/spike-project/spike)

Check a deeper presentation (https://github.com/delsuc/Spike_in_MS_2021) of SPIKE done in Prof
P.O'Connor lab in April 2021

The process that run on the previous slide
Actually, just a few lines of python

import spike

from spike.File import BrukerMS

d = BrukerMS.Import_1D("files/histonepeptide_ms2_000002.d/fid")

figure(figsize=(16, 3))

d.display(new_fig=False)

D = d.copy().center().kaiser(4).zf(2).rfft().modulus()

figure(figsize=(16,4))

D.set_unit('m/z').display(zoom=(400,750),new_fig=False);

Let's go through them slowly...

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/delsuc/Fourier_Transform/blob/master/Definition_Properties.ipynb
https://github.com/spike-project/spike
https://github.com/delsuc/Spike_in_MS_2021

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 3/26

First get rid of the syntax problems !
First, load the SPIKE environment into this presentation - which is in fact a python program presenting its
results in a browser (amazing if you ask me) and load the specific tool for reading Bruker FT-ICR files.

import spike

from spike.File import BrukerMS

Then, import the raw data-set from the instrument and create d a python object - and display.

The program takes care of handling all the acquisition parameters.

d = BrukerMS.Import_1D("files/histonepeptide_ms2_000002.d/fid")

figure(figsize=(16, 3))

d.display(new_fig=False)

Then do the processing - this is where everything takes place

D = d.copy().center().kaiser(4).zf(2).rfft().modulus()

Finally, display the spectrum with a given zoom window

figure(figsize=(16,4))

D.set_unit('m/z').display(zoom=(400,750),new_fig=False);

let's explore the processing
D = d. copy() .center().kaiser(4).zf(2).rfft().modulus()

Actions are applied to the object by the mean of the dot " . "

in SPIKE spectroscopic objects are modified in-place, in order to optimize speed and memory.

d has been created in memory, we do not want to loose it while doing transformations, so we just copy() it

and create a new object on which the following actions are applied

D = d.copy().center().kaiser(4).zf(2).rfft().modulus()

actions are chained, the whole expression evaluates as the final spectrum.

The processing is done in 5 steps ‼️ ... not just one ❓️

let's explore the processing - 1 -
D = d.copy(). center() .kaiser(4).zf(2).rfft().modulus()

Remember one of the relationships presented in first part:

integrals

= ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝐹 (𝜔)𝑑𝜔𝐹𝑜 𝑓𝑜

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 4/26

So, if a slight miss-adjustment of the 0 of the detector is present, there might be a small continuous constant
value added to all measured points.

Added over the whole fid this value will show up as a strong spike at the null frequency.

Even if it corresponds to (but only in Broad-Band mode) it might creates round-off errors in the
processing because of a very strong dynamics.

So we just compute a centering of the data-set to remove this artefact.

𝐹𝑜

𝑚/𝑧 = ∞

let's explore the processing - 2 -
D = d.copy().center(). kaiser(4) .zf(2).rfft().modulus()

This is the very important Apodisation step.

It consists in pre-multiplying the fid with some shape, with a strong impact on the lineshape, resolution and
noise level in the final spectrum.

It is deeply related to the convolution theorem - which we will go through now...

Convolution
We have seen that Linearity means that FT of sum is the sum of FT

if linearity is for addition, convolution is for multiplication.

Convolution of two functions and is defined as: (noted it here)

Then the convolution theorem states that FT of product is the convolution of FT

This is a symmetric operation for and , and can be described as and sharing their shapes.

Difficult to apprehend, Let see it in action:

𝑓 𝑔 ∗

(𝑓 ∗ 𝑔)() = 𝑓(𝑡)𝑔(𝑡 −)𝑑𝑡𝑡′ ∫
∞

−∞

𝑡′

𝑓 𝑔 𝑓 𝑔

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 5/26

In [22]:

executed in 375ms, finished 07:14:47 2021-09-29

the broadening exemplify the Gabor principle which states that
 where is the standard deviation (the spreading) of each signals

 and cannot be slim (or fat) at the same time,
if one is fat, the other is slim.
≥𝜎𝑓𝜎𝐹
1

4𝜋
𝜎

⇒ 𝑓 𝐹

Toy Convolution
frequency 8.00

broadening 0.00

truncating_to 1000

def ftcv(frequency = 3.0, broadening=2.0, truncating_to=30):

 "showing convolution"

 freq = frequency

 N = truncating_to

 br = broadening

 x = np.linspace(0,10,1000) # a vector of 1000 points equi distant from 0.0 t

 y = np.cos(2*np.pi*freq*x)

 g = np.zeros_like(x)

 g[0:N] = 1.0

 apod = g*np.exp(-br*x**2)

 y = y*apod

 YY = np.fft.rfft(y,n=1000)

 yax = np.linspace(0,50,501)

 f, (ax1,ax2) = plt.subplots(nrows=2, figsize=(16,8))

 ax1.plot(apod, ':k', lw=2)

 ax1.plot(y.real)

 ax1.set_ylim(ymin=-1.1, ymax=1.1)

 ax1.set_xlim(xmax=400)

 ax2.plot(yax, abs(YY))

 ax2.set_xlim(xmax=20)

display(Markdown("""## Toy Convolution"""))

interact(ftcv,

 frequency=FloatSlider(min=0, max=20, value=8, continuous_update=False),

 broadening=FloatSlider(min=0,max=5, value=0, continuous_update=False),

 truncating_to=IntSlider(min=20, max=1000, value=1000, continuous_update=Fal

#interactive(ftcv, frequency=(0.0,50.0), truncating_to=(4,500), broadening=(0,30))

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 6/26

the truncation shows the same but the FT of the truncature function is the cardinal sine :

sinc(𝑥) =
sin(𝑥)

𝑥

Classical apodisation functions
chosen to limit the truncation effect, while keeping narrow lines

In [4]:

executed in 245ms, finished 07:04:03 2021-09-29

The kaiser function is also very usefull as a generic/tunable apodisation function.

kaiser(β=...)

from numpy import blackman, hamming, hanning, bartlett, kaiser # these are pre-def

def sine_bell(N): # this one is missing

 "defines the sine-bell apodisation window"

 return np.sin(np.linspace(0,np.pi,N))

figure(figsize=(10,8))

for apod in ("sine_bell", "bartlett", "hamming", "hanning", "blackman"):

 y = eval("%s(100)"%(apod))

 plt.plot(y,label=apod)

plt.legend();

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 7/26

In [5]:

executed in 414ms, finished 07:04:04 2021-09-29

plt.figure(figsize=(10,8))

for beta in range(1,11):

 plt.plot(kaiser(100, beta), label=r"$\beta=%.1f$"%beta)

#plt.legend()

plt.text(2,0.9,r"$\beta=1$",fontsize=18)

plt.text(5,0.68,r"$\beta=2$",fontsize=18)

plt.text(6,0.5,r"$\beta=3$",fontsize=18)

plt.text(30,0.4,r"$\beta=10$",fontsize=18);

#plt.title(r'The Kaiser(β) apodisation');

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 8/26

In [6]:

executed in 341ms, finished 07:04:04 2021-09-29

Exploring a slightly more realistic signal
Freq1 13.00 Freq2 14.00

Truncation to 1000 Broadening 0.00 added noise 0.00

Apodisation None β 4.00 (β used by Kais…

apodlist = ["None", "sine_bell", "bartlett", "hamming", "hanning", "blackman", "kai

def ftapod(freq1 = 10.0, freq2 = 20.0, br=0.5, N=150, apod="empty", beta=3.0, noise

 "showing convolution"

 x = np.linspace(0,10,1000) # a vector of 1000 points equi distant from 0.0 t

 y = np.cos(2*pi*freq1*x) + np.cos(2*pi*freq2*x)

 g = np.zeros_like(x)

 if apod == 'None':

 g[0:N] = 1.0

 elif apod == 'kaiser':

 g[0:N] = eval("%s(%d,%f)"%(apod,N,beta))

 elif apod != 'None':

 g[0:N] = eval("%s(%d)"%(apod,N))

 y *= np.exp(-br*x**2)

 if noise>0:

 y += noise*np.random.randn(1000)

 ymax = max(y)

 YY = np.fft.rfft(y*g,n=1000)

 yax = np.linspace(0,50,501)

 f, (ax1,ax2) = plt.subplots(nrows=2, figsize=(12,6))

 ax1.plot(ymax*g, ':k', lw=2)

 ax1.plot(y*g)

 ax1.set_ylim(ymin=-1.1*ymax, ymax=1.1*ymax)

 ax1.set_xlim(xmax=400)

 ax2.plot(yax, abs(YY))

 ax2.set_xlim(xmax=20)

display(Markdown("""## Exploring a slightly more realistic signal"""))

from ipywidgets import interactive_output, Dropdown, HBox, VBox, Label

freq1 = FloatSlider(description='Freq1',min=0, max=20, value=13, continuous_update=

freq2 = FloatSlider(description='Freq2',min=0, max=20, value=14, continuous_update=

beta = FloatSlider(description='β',min=1.0, max=10.0, value=4, continuous_update=Fa

truncating_to = IntSlider(description='Truncation to',min=2,max=1000, value=1000, c

broadening = FloatSlider(description='Broadening',min=0,max=1, value=0, continuous_

noise = FloatSlider(description='added noise',min=0, max=3, value=0, continuous_upd

apodisation = Dropdown(description='Apodisation',options=apodlist)

uibox = VBox([HBox([freq1, freq2]),

 HBox([truncating_to, broadening, noise]),

 HBox([apodisation, beta, Label('(β used by Kaiser only)')])])

out = interactive_output(ftapod,

 {'freq1':freq1, 'freq2':freq2, 'br':broadening, 'N':truncating_to, 'apod':apodi

display(uibox, out)

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 9/26

Explore the effect of truncation and apodisation with respect to signal life-time (broadening) and noise
level.
explore how apodisation may improve the resolving power
and how it degrades the SNR in the same time

let's explore the processing - 3 & 4-
D = d.copy().center().kaiser(4). zf(2) .rfft().modulus()

zerofilling consists in adding zeros to the data-set before FT.
what we've seen about truncation is an example
improves numerical resolution - here doubling the number of points
Finally, as in take the modulus (in step 5) which halves the amount of information, it is actually a requisite !

always zerofill at least once

D = d.copy().center().kaiser(4).zf(2). rfft() .modulus()

This is the Fourier step - this is actually the simpler step -
rfft() r is for real - we use here an optimized FT - whichs knows that the imaginary part is null

there are some other subtilities here that we will not discussed (check SPIKE source code !)

let's explore the processing - 5 -
D = d.copy().center().kaiser(4).rfft().zf(2). modulus()

This step replaces the complex series produced by FT (even rfft()) by its modulus

What happens if we don't do that ?

𝑋𝑖 | |𝑋𝑖

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 10/26

d = bkMS.Import_1D("files/histonepeptide_ms2_000002.d/fid")

figure(figsize=(16, 3))

d.display(new_fig=False)

D = d.copy().center().kaiser(4).zf(2).rfft()

figure(figsize=(16,4))

D.set_unit('m/z').display(zoom=(400,750),new_fig=False);

we get this

In [23]:

executed in 228ms, finished 07:16:45 2021-09-29

In [24]:

executed in 311ms, finished 07:16:46 2021-09-29

What's going on ?

To find out, we zoom on a peptide pattern

Using 3 parameters calibration, Warning calibB is -ML2

d = bkMS.Import_1D("files/histonepeptide_ms2_000002.d/fid")

D = d.copy().center().kaiser(4).zf(2).rfft()

figure(figsize=(16,4))

D.set_unit('m/z').display(zoom=(400,750),new_fig=False);

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 11/26

In [8]:

executed in 206ms, finished 07:04:05 2021-09-29

to make clearer - let's change the apodisation, for a much smoother one (that conserves the beginning of the
fid)

In [9]:

executed in 241ms, finished 07:04:05 2021-09-29

FT of a Causal signal
It all comes from the fact that the signal of the fid comes from a pulse

 signal for is null
signal is said Causal
its real part is Absorptive and decay rapidly
its real part is Dispertive and decay more slowly (is null for a stationary signal)

Here is a simulation

⇒ 𝑡 < 0

figure(figsize=(16,4))

D.display(zoom=(489.2, 490),linewidth=2, new_fig=False);

figure(figsize=(16,4))

Dph = d.copy().center().apod_sin(0).zf(2).rfft().set_unit('m/z').display(zoom=(489.

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 12/26

In [10]:

executed in 168ms, finished 07:04:05 2021-09-29

dephasing
However, if there is an error on the t=0 position, the phase of the time signal is Then the signal get
dephased

here with an error of 70°...

≠ 0

In [11]:

executed in 249ms, finished 07:04:05 2021-09-29

This is exactly what we see here - with each line has a different phase.

Line at is in absorption - Line at is in dispersion - other are mixed𝑚/𝑧 = 489.28 𝑚/𝑧 = 489.61

freq = 20

t = linspace(0,10,10000)

y = cos(2*np.pi*freq*t)*exp(-3*t)

YY = np.fft.rfft(y)

figure(figsize=(16,4))

yax = linspace(0,500,len(YY))

plot(yax, YY.real, label='real part - Absorptive')

plot(yax, YY.imag, label='imaginary part - Dispersive')

plt.xlim(xmin=15, xmax=28)

plt.legend();

freq = 20

t = linspace(0,10,10000)

y = cos(2*np.pi*freq*t+(7/9)*pi/2)*exp(-3*t)

YY = np.fft.rfft(y)

figure(figsize=(16,4))

yax = linspace(0,500,len(YY))

plot(yax, YY.real, label='real part')

plot(yax, YY.imag, label='imaginary part')

plt.xlim(xmin=15, xmax=28)

plt.legend();

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 13/26

In [12]:

executed in 201ms, finished 07:04:05 2021-09-29

Usual solution is to take the modulus

But then line are as broad as the Dispersive lineshape

In [13]:

executed in 173ms, finished 07:04:06 2021-09-29

and compared to the previous version, strongly apodised - which "compresses" the line to the detriment of SNR

figure(figsize=(16,4))

Dph.display(zoom=(489.2, 490),linewidth=2,new_fig=False);

Dph.phase(90,0).display(zoom=(489.2, 490),linewidth=2,new_fig=False);

figure(figsize=(16,4))

Dph.modulus().display(zoom=(489.2, 490),linewidth=2,new_fig=False);

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 14/26

In [14]:

executed in 196ms, finished 07:04:06 2021-09-29

Absorption mode
Of course we would prefer to have all lines in absorption, to do that we need to know/find the dependence
of phase with peak position.

cause effect oder

error on 0 of phase ref. phase error common to all signals 0th order

error on t=0 postion phase error proportional to frequency 1st order

error on ion excitation time phase error proportional to frequency² 2nd order

 : trivial to correct
 : can be estimated, easy to correct - as variation is constant

created by a delay after excitation
 : can be estimated, difficult to correct - as variation is unbound

created by "chirp" frequency swept excitation pulses !

𝜙(𝜔) = + 𝜔+𝜙𝑜 𝜙1 𝜙2𝜔
2

𝜙𝑜

𝜙1

𝜙2

𝜙𝑜

𝜙1
𝑑𝜙

𝑑𝜔

𝜙2
𝑑𝜙

𝑑𝜔

Examples of phase error

figure(figsize=(16,4))

Dph.display(zoom=(489.2, 490),linewidth=2,new_fig=False)

D.modulus().display(zoom=(489.2, 490),linewidth=2,new_fig=False);

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 15/26

In [15]:

executed in 149ms, finished 07:04:06 2021-09-29

In [16]:

executed in 155ms, finished 07:04:06 2021-09-29

sw = 200000

omega = linspace(0,sw,10000) # freq axis

mz = np.random.randint(5000,10000,300)

ph0=123

phase = ph0*np.ones(10000)

figure(figsize=(16,3))

plot(omega, phase, 'k', lw=2, alpha=0.2)

scatter(omega[mz], phase[mz], 200,'r')

plt.title("Oth order phase error 123° phase error")

plt.xlim(xmin=100000, xmax=200000);

plt.ylim(ymin=-180, ymax=+180);

200kHz - 400kH Nyq - 2.5 µs sampl - 250µs error = 100 points = 50 turns

ph1 = 50*360/sw

phase = (ph0 + ph1*omega)%360 - 180

figure(figsize=(16,3))

plot(omega, phase, 'k', lw=2, alpha=0.2)

scatter(omega[mz], phase[mz], 200,'r')

plt.title("1st order phase error 250µsec error on t0")

plt.xlim(xmin=100000, xmax=200000)

plt.ylim(ymin=-180, ymax=+180);

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 16/26

In [17]:

executed in 160ms, finished 07:04:06 2021-09-29

phase is random-like

Getting an absorption spectrum
use swift excitation to generate 1st order only correction

if you can
adapt the processing (special apodisation for instance)
use ad-hoc phase correction

optimising the excitation pulse - the shorter the better
phase rotation induces some artefacts that cannot be corrected

compute and apply a phase correction

2 methods for finding the phase correction

Automatic approach

1. Peak Detection
2. Initial fitting to a reduced m/z range (Followed by the Iterative Tune procedure)
3. Extension of the initial fit (Followed by the Iterative Tune procedure)

1ms pulse

ph1 = -100*360/sw

ph2 = 200*360/sw/sw

phase = (ph0 + ph1*omega +ph2*omega**2)%360 - 180

figure(figsize=(16,3))

plot(omega, phase, 'k', lw=2, alpha=0.2)

scatter(omega[mz], phase[mz], 200,'r')

plt.title("2nd order phase error 1msec freq. swept pulse")

plt.xlim(xmin=100000, xmax=200000);

plt.ylim(ymin=-180, ymax=+180);

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 17/26

4. Fitting of the complete spectrum (Followed by the Iterative Tune procedure)
5. Peak symmetry adjustment
6. Baseline correction- detect peaks on magnitude spectrum

Works well if a high density of peaks....

Apply a manual approach
determine and locally

use the fact that locally is not bounded

𝜙𝑜 𝜙1

=𝜙1
𝑑𝜙

𝑑𝑡

In [18]:

executed in 321ms, finished 07:04:07 2021-09-29

1ms pulse

ph1 = -100*360/sw

ph2 = 200*360/sw/sw

phase = (ph0 + ph1*omega +ph2*omega**2)%360 - 180

dphi = sw*(ph1 + 2*ph2*omega)

mz = np.random.randint(5000,10000,30)

figure(figsize=(16,3))

plot(omega, phase, 'k', lw=2, alpha=0.2)

scatter(omega[mz], phase[mz], 200,'r')

plt.title("2nd order phase error 1msec freq. swept pulse")

plt.xlim(xmin=100000, xmax=200000);

plt.ylim(ymin=-180, ymax=+180);

figure(figsize=(16,5))

plot(omega, dphi, 'k', lw=2, alpha=0.2)

scatter(omega[mz], dphi[mz], 200,'r')

plt.title("ϕ_1 1msec freq. swept pulse")

plt.xlim(xmin=100000, xmax=200000);

plt.ylim(ymin=20000);

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 18/26

do a linear fit of , integrate to get is left to do !

works also on sparse spectra

𝜙1 𝜙2 → 𝜙𝑜

Phase sensitive FTICR-MS

The phase mix the absorption and dispersion linesphapes
We see a strong linear dependence of phase (here a small spectral window)

Phase sensitive FTICR-MS

linear phase correction in not enough

 quadratic phase correction⇒

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 19/26

Phase sensitive FTICR-MS
interactive/automatic module for FTICR phasing in Spike (not finished yet, but available)

Phase sensitive FTICR-MS

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 20/26

Phase sensitive FTICR-MS

notice the baseline distortion

the Hilbert transform

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 21/26

relates the Absorptive and Dispersive shape

complex: real / imaginary
and time/freq asymmetry

due topoint 0 => odd number
3 DFT

fft - rfft - fftr
causal signal
KK
Hilbert transform

29 slides

Beyond Fourier transform
There are MANY alternative to the DFT (i.e. the numerical handling of the Fourier Transform)

some general principles

ALL methods are based on assumptions on the signal, and ask a question to the data
Important to know them to interpret the answers (and the problems)

there is no difference between a spectral method and a noise reduction method.

There are Three famillies of approaches, which differ fundamentaly,

depending how many parameters are extracted from the experimental points (the fid)𝑃 𝑁

Some are known in this community (FDM), some less, some are old (Burg mem 1975), some are very recent...

transform methods are trendy (ML, NN, images ...)

many have advantages ... and defaults !

not the place to present them
give you some hints of useful methods / what they are good for
mostly give you the big principles...

3 different famillies

 experimental points / parameters

 - parametric methods
an analytical model of the signal is assumed (sum of damped sinusoids)
the model parameters are fitted to the data using some kind of target function (usually Mean
Squared Error or Maximum Likelihood)
the method produces the list of the parameter values
Sinus-it is an example, (there are many others, FDM, HSVD, Burg,...)

 - transform methods (my naming)
assumptions are introduces indirectly by modeling the measurement process,
these assumptions are generally introduced by a regularisation function
the method produces a graphic / (a spectrum / an image)
there are many examples: FISTA, MaxEnt, wavelet, urQDd, ...

𝑁 𝑃

𝐍 > 𝐏

𝐏 > 𝐍

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 22/26

t e e a e a y e a p es S , a t, a e et, u Q d,

 - the Fourier transform
FT is invertible just changing of point of view (no assumption ?)

𝐏 = 𝐍

⇒

Fourier Transform

which assumptions ?

the signal is zero when I did not measure it
there is no noise - everything is data
the spectrum is modeled as a sum of oscillators, regularly placed along the frequency axis
DFT is the least square solution - and MSE = 0

Advantages

Very fast
Very stable
Very well known

Drawbacks

data as a whole cannot do varying frequency!⇒

Nyquist - Heisenberg - Gabor

Nyquist - Heisenberg - Gabor ???
Here - 2 signals differing by 0.1 Hz over 10sec :

0.1
1

2𝑡𝑚𝑎𝑥

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 23/26

In [19]:

executed in 248ms, finished 07:04:07 2021-09-29

it seems that a clever analysis, in high SNR , is able to extract this information

parametric
Advantages

very precise
go beyond Gabor and Nyquist limits (continuity assumption)

 can do instantaneous frequency!
can adapt the model to signal specificities

Drawbacks
noise is not in the model (by definition) / cannot hardly be handled - in particular complex noise
problems with non-standard line-shapes
always present nice looking results coherent with the model (check your statistics !)
usually slow to very slow (no Cooley-Tuckey algo !)
non convex problem MANY methods which one to choose ?

⇒

⇒ ⇒

transforms
Advantages

Very stable - Very well known
go beyond Gabor and Nyquist limits can do instantaneous frequency! (wavelet)
strong theoretical background (norm and compressed sensing theorem (Candès - Donoho))
noise is in the model can be used as de-noising

⇒

ℓ1

⇒

t = linspace(0,10,1000)

f1 = 2

f2 = 2.005

y1 = cos(2*pi*f1*t)

y2 = cos(2*pi*f2*t)

figure(figsize=(16,6))

plot(t, y1)

plot(t, y2)

for io in (258, 508, 858):

 xo = t[io]

 plot([xo,xo],[-1,1],':k',lw=3)

 scatter(xo,y1[io],200)

 scatter(xo,y2[io],200)

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 24/26

can be used along FT (de-noising, deconvolution, NUS, ...)
(near) convex problem MANY methods all equivalent in the end ! (except for the regularisation
function)

Drawbacks
not so fast
not very well known
MANY methods

⇒ ⇒

Noise reduction - urQRd (2014)
An Linear Algebra approach (known since the `80s), based on a new sort of fast SVD ...

Truncate first, thanks to random projection theorem
 urQRd
use QR to estimate SVD from truncated
 urQRd
from QR decomposition, rebuild then
 urQRd
iterate

plus...

use FFT trick to compute all matrix products.
 urQRd

1.Chiron L., van Agthoven M. A., Kieffer B., Rolando C., Delsuc M-A. Proc Natl Acad Sci USA, 111 (4) :1385–1390,

(2014)

1

𝐇

𝐇

𝐇 𝑆

example in FT-ICR

urQRd - speed and robustness compared to Cadzow
on a synthetic dataset

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 25/26

compressed sensing
Here, standard FISTA analysis

example on 64k / 75msec acquisition of ubiquitine

ion cloud dynamic

9/29/21, 9:08 AM 2_FTICR - Jupyter Notebook

localhost:8888/notebooks/2nd-AUS-FTICR/2_FTICR.ipynb# 26/26

and line-shape
beyond FT

FT has many drawbacks
many advantages
hidden hypothesis
noise

instantaneous freq
FT
FDM
genetic

signal modeling
noise handling
N>P P>N

FISTA
...

In []:

