
Silent Data Errors:
Sources, Detection, and Modeling

Adit Singh* Sreejit Chakravarty§ George Papadimitriou† Dimitris Gizopoulos†

*Auburn University, Auburn, AL, USA, singhad@auburn.edu
§Intel, Santa Clara, CA, USA, sreejit.chakravary@intel.com

†University of Athens, Greece, {georgepap | dgizop}@di.uoa.gr

Abstract—Chip manufacturers and hyperscalers are becoming
increasingly aware of the problem posed by Silent Data Errors
(SDE) and are taking steps to address it. Major computing
facilities operators like Meta and Google have emphasized the
critical role of SDEs in today’s microprocessors. Numerous
studies in the literature have highlighted the severity of this
issue, especially in datacenter applications operating at large
scales. These errors can lead to data loss and require a sig-
nificant amount of time and effort to resolve through debugging
engineering efforts, which can take months to complete. In this
paper, we provide an overview of the issue of SDEs, including
an explanation of the problem and the current methods used to
address it, as well as gaps that still exist in addressing the issue.
We also discuss the different sources of SDEs, including post-
manufacturing testing failures, voltage and timing marginalities,
and hard-to-detect faults. The paper emphasizes the impact of
timing marginalities as a significant source of SDEs. Finally, our
spotlight points to the architecture and system dimensions of the
problem: we describe the challenges of measuring the true (still
unknown) rates of SDE from CPUs, and emphasize on the role of
detailed microarchitectural simulation models for this purpose.
We present data on the severity of SDEs and their predicted
rates under various operating conditions, sources of faults, and
technology fabrication nodes.

Index Terms—Silent data corruptions, microprocessors, tim-
ing marginalities, voltage failures, microarchitectural simulation,
microarchitectural modeling, fault injection, failure rates

I. INTRODUCTION

In modern computing systems, microprocessors are critical
components that power a wide range of applications, from per-
sonal devices to large-scale data centers. Extreme performance
levels are expected to be reached by future supercomputers by
leveraging millions of microprocessor cores and specialized
accelerators. Ensuring dependability is one of the most difficult
barriers to overcome in achieving exascale computing [1]. Mi-
croprocessors employ the most aggressive design and manu-
facturing techniques for the above purposes and are, therefore,
far from immune to errors, and in particular, the occurrence
of silent data errors (SDEs) can have serious consequences for
system reliability and computational accuracy [2]–[4]. Silent
data errors are one of the most insidious and difficult-to-detect
problems in modern computing. A silent data error occurs
when data is corrupted in such a way that it still appears
valid (no hardware or software level ”alarm” is raised), but
produces incorrect results when used in computation. In the
context of microprocessors, these errors can arise from a

variety of sources, including cosmic rays, hardware defects,
and hardware bugs. One of the known sources of silent data
errors is cosmic rays. These high-energy particles can strike
computer memory and cause bit flips, where a 0 becomes a
1 or vice versa. Other sources of silent data errors include
hardware defects due to manufacturing and aging, hardware
design bugs, and power supply fluctuations. Further, low
voltage operation makes the chip more susceptible to silent
data errors, since the critical charge to flip a bit is lower at
reduced voltages [5]–[12].

Identifying and measuring silent data errors in microproces-
sors can be challenging because they often occur sporadically
and are difficult to reproduce [13], [14]. To minimize the im-
pact of on-chip memory errors, error correcting codes (ECC)
are used to detect and correct such errors [15]. However, the
use of ECC methods results in additional storage requirements
and increased complexity, and cannot detect or correct all
hardware-induced errors [16]. Although commonly used ECC
methods can identify and correct some faults, they are limited
in their ability to do so, with the most common method,
single error correction, double error detection (SECDED),
able to detect up to two flipped bits and correct only one
flipped bit per 64 bits [15], [16]. In addition, multiple-bit faults
are more common in on-chip memory structures in newer
fabrication technologies [17]. While ECC can be beneficial
in reducing failure rates in some on-chip memory structures,
it is not always applicable to all functional, control, and
memory blocks of the microprocessor. Even when using ECC
methods, silent data corruptions are still possible, especially in
large-scale datacenter infrastructures, which poses a significant
threat to program integrity [13], [14], [18].

Silent data errors constitute a significant challenge for mod-
ern microprocessors and the computing systems they power.
However, through the use of sophisticated error detection tech-
niques, as well as the development of fault-tolerant and error-
correcting models, researchers have made significant progress
over the last decades in mitigating the rate and impact of silent
data errors. As computing systems continue to become more
complex and more critical to our daily lives, it is likely that
this area of research will continue to be an important focus for
the computing community. It is therefore critical to identify the
sources of errors that are most likely to affect the program’s
execution silently, to propose novel ways for modeling and
detection of silent data errors. One approach is to use fault



tolerance techniques, such as redundancy or replication, to
ensure that multiple copies of critical data are available. This
can help ensure that even if a silent data error occurs, the
system can continue to operate correctly. Another approach is
to use error-correcting codes that can detect and correct errors
automatically. These techniques can be especially important
in safety-critical systems, where the consequences of a silent
data error can be catastrophic.

In this paper, we summarize the importance of SDEs by first
defining the SDE problem. We present the current approaches
and the vital gaps in addressing the important problem of
SDEs, and the potential sources of failure that could cause
SDEs. We also discuss the impact of hard-to-detect faults
that escape from post-manufacturing testing on SDEs, by
investigating several types of manufacturing test, such as
cell aware tests, scan timing tests, and system level tests.
We stress another major source of potential SDEs, which is
the sensitivity to voltage failures and timing marginalities,
and discuss that timing marginalities being the source of a
significant number of SDEs. Finally, we present the challenges
in measuring the SDE rates on real microprocessors and in
detailed low-level simulation models, and present the severity
of SDE rates in different technology fabrication nodes and un-
der several operating conditions using early microarchitecture
level modeling and measurement of silent data errors.

II. SILENT DATA ERROR PROBLEM
Sreejit Chakravarty

After defining the SDE problem, the methodology used to
address it is summarized. and gaps in the current approach are
highlighted. Silicon error sources are shown in Fig. 1(b). Fig.
1(a) abstracts the silicon life cycle and depicts how silicon
error sources are targeted. Logic bugs can also cause errors
but are assumed to be eliminated prior to productization of
the product and not considered. Silicon provider’s high-volume
manufacturing (HVM) flow consists of two screens to weed
out faulty silicon: ATE tests and system level tests (SLTs).
ATE tests are primarily structural tests like scan, memory
BIST, etc. SLTs are application-based tests. Both screens target
defects, circuit marginality issues and early life failures. HVM

manufacturing screens are not perfect and there are residual
faulty silicon escapes, referred to as HVM DPM escapes.

After shipment, silicon is assembled into the final system
and undergo additional tests. These tests are more exhaustive
system tests, than those used by silicon providers. The goal is
to screen for HVM DPM escapes.

A. SDE Definition

Silent Data Error is often discussed in two different con-
texts. It is important to distinguish between the two since the
required solutions are different.

1) Low DPM SDE. The first of this is a new name for
“DPM escape”. DPM escape from HVM testing is a
fact of life. But, as shown in Fig. 2(a), it has a different
impact on the end customer based on the size of the
installation base. DPM1, which could be in the low
100s, is an adequate DPM level for installation base that
are small, may be 10s of thousands. However, DPM1 is
not acceptable for larger installation base since it leads
to unacceptable levels of failure. For larger installation
bases a much lower DPM level, DPM2 which could be
in the low 10s is required. Achieving such low DPM
level is difficult by itself but has been exacerbated due
to the rise in the complexity of silicon designs. Fig. 2(b)
shows the increase in design size resulting from complex
designs incorporating added functionality on a single
piece of silicon. This has prompted companies having
large installation base to highlight the issue [13], [14].
The central problem, as pointed out in these papers, is
the root causing the failures and finding an effective fix
to plug the small DPM escapes from silicon providers.

2) InField SDE. In Fig. 1(a), InField refers to the silicon
life cycle phase when the end user uses the silicon
device. InField errors are radiation induced soft-errors
or aging induced reliability hard failures. Protection
mechanisms, like memory error-correcting codes (ECC),
are added for InField errors. InField errors are said to be
silent if the protection mechanism does not detect them.
For example, an error in the memory that is not detected
and/or corrected by the ECC scheme is a silent error. It

Fig. 1. Mapping of silicon error sources to silicon life cycle.



Fig. 2. DPM impact on customer installation.

is silent in the sense that the silicon does not recognize
or flag the error. The resulting error could be identified
in other system components, like firmware, or not.

B. Current Approach and Gaps in Addressing SDE

1) Brick and Mortar Story of Low DPM SDE: Bick-and-
mortar analogy is used to address the current methodology
for Low DPM SDE problem. For ATE structural testing, the
SoC is divided into small DFT domains like memories, logic
within a clock domain, analog IPs, etc. Specialized DFT added
to each DFT domain, shown as bricks in Fig. 3(a), is used
to test it. Inter-domain structural tests, like hierarchical scan,
are used to test the silicon interface between DFT domains,
shown as mortars in Fig. 3(a). However, inadequate coverage
or inadequacy of the target fault model result in DPM leaks,
shown as brick test drips in Fig. 3(b). Inadequacy of inter-
domain structural tests results in mortar drips of Fig. 3(b).
“Mortar test sealants” (HVM-SLT) of Fig. 3(c), which are
HVM SLTs, are added to patch these leaks. There are two
major issues with this HVM test flow.

• Structural tests are based on fault models, and work well,
unless very low outgoing DPM is a requirement. Ongoing
effort to improve fault models, to reduce HVM DPM,
targets only the “brick test drips” of Fig. 3(b).

• Filling “mortar drips” of Fig. 3(b) is getting more difficult
due to the increase in design size and aggressive design
trends. The inadequacy of fault model based structural
tests and automation tool capacity are falling short in
addressing this problem.

• HVM-SLTs, which are randomly generated tests with
different instruction and data mixes, use a “shot gun”
approach to fill the brick-and-mortar drips. Increasing the

number of HVM-SLTs improves its quality. However,
there is no meaningful approach to identify effective
HVM-SLTs or to measure an HVM-SLT’s quality. This
approach adds very significantly to test cost. They are
therefore truncated, leaving a DPM gap.

• As shown in Fig. 3(d), system houses al run a barrage
of tests before enabling their systems for end user use.
These are a mix of frequently used applications, mixed in
with some longer tests from the HVM system test flow.
Such tests run for longer duration, and based on the usage
model, run often enough prior to farming it out to the end
user. Specific tests that fail are fed back to the silicon
provider to plug their test holes.

Hence, we have reached an inflection point and new ideas
are needed to fill the gap left by the adhoc HVM test screens.

2) InField SDE: InField error prevention relies on protec-
tion mechanisms which are assumed to provide good coverage.
This is a fallacious assumption! Protection schemes were
developed to protect against radiation induced soft errors and
provide poor protection against aging and HVM DPM related
hard failures, as illustrated using the example of Fig. 4. Fig.
4(a) shows a memory with data ECC and address parity
protection. Fig. 4(b) shows a detailed view of the array. Note
that sense amplifiers (SA) do not change state if its differential
inputs are not driven.

Assume wordline W0 s@0. On a read from location 0,
the cells are not selected, the SA’s differential inputs are not
driven, and memory output retains the old state. If the previous
read was fault-free, then the ECC decoder will not detect this
error. For the memory writes and reads sequence of Table I,
the output after the second read should be BB. In the faulty
case, it is AA instead. However, since the ECC[AA] matches

Fig. 3. Brick-and-Mortar analogy of Low DPM SDE issue.



TABLE I
A PERSPECTIVE ON SDE SOURCES.

Memory Operations Good Data Faulty Data
1st Write ADDR3, AA N/A N/A
2nd Read ADDR3 AA, ECC[AA] AA, ECC[AA]
3rd Write ADDR0, BB N/A N/A
4th Read ADDR0 BB, ECC[BB] AA, ECC[AA]

the faulty data AA the decoder will not flag this error. This
is an example of an InField SDE. A similar observation can
be made using reliability studies of ECC protected memories
alluded to in Fig. 4(c). It shows the percentage of reliability
induced errors escaping detection (and correction) by ECC
decoders, at different voltage and operating corners.

The key question is: how is the gap left by protection
schemes filled? Repeated or periodic InField testing is the
predominant practice. Unfortunately, there is a major gap in
InField testing.

• Scan/LBIST tests with 90% or more coverage is often
considered to be very good logic test.

• March C- is assumed to be a good infield test for
memories.

What is the basis for using the above tests for InField
testing? It seems to be based on convenience rather than any
sound engineering basis. In addition to the above structural
tests, SLTs are often used as InField tests. Once again, based
on our inability to measure the quality of SLTs there is no
rationale basis for the use of such tests. They are more of a
feel-good test! Questions that remain unanswered are: what is
an appropriate InField test for logic and memories? How often
should we apply these tests? How do we create measurably
effective SLTs for InField Testing?

III. TESTING TIMING MARGINALITIES THAT CAUSE SDES
Adit Singh

A. Understanding Escapes from Manufacturing Tests

The previous section has outlined the many varied sources
of failure that can potentially cause silent data errors (SDEs)
in computing systems. Any defective, marginal, or unstable
IC or SOC that is not detected and screened out during
post manufacturing tests can potentially cause failure during
operational deployment. additionally, early life failures may
occur from latent defects of device aging. While many test

escapes result in repeated and severe malfunction during
operation, including system crashes, that are readily observed
and detected, it is not uncommon for more subtle faults with
a limited error impact to go unnoticed, particularly if they
are infrequently activated. Observe that rare activation with
minimal error impact are precisely the characteristics of the
“hard to detect faults” that escape post manufacturing testing
in the first place.

1) New Cell Aware Tests: The solution to minimizing test
escapes that cause field failures is obviously better testing, with
more complete test coverage of the actual defects and anoma-
lies observed in manufacturing. This was discussed at some
length in the previous section. Classical stuck-at (SA) and
transition delay fault (TDF) test generation explicitly targets
faults only at the circuit nodes, i.e., the interconnects between
the standard cells; defects and faults within the standard cells
of the design are not targeted during test generation, and are
only serendipitously detected. Plugging this test coverage gap
was the motivation behind the recent introduction of the Cell
Aware (CA) test methodology [19] which also targets shorts
and opens within the standard cells of the design during test
generation. CA tests have been shown to significantly reduce
test escapes in volume production. However, comprehensive
CA test generation significantly increases test set size and
test application times. Additionally, targeting resistive defects,
beyond ideal shorts and opens, can make test costs prohibitive.
Consequently, CA tests are generated for only a limited set
of defect resistances in practice, resulting in many of the
test escapes discussed earlier with the help of the Brick-
and-Mortar analogy in Fig. 3. Nevertheless, in principle,
effective test methodologies are available today to minimize
field failures, including silent data errors, that are caused by
classical permanent faults. In this area, the current focus of test
development in advancing DFT (design-for-test) and ATPG
(Automatic Test Pattern Generation) towards better detection
of these faults is largely aimed at reducing the cost of test
generation and application to facilitate high coverage CA tests.

2) Scan Timing Tests and Process Variations: Meanwhile,
scan test methods that target timing failures appear to be less
effective in screening failing state-of-the art circuits. Both
tradition TDF, as well as two-cycle CA delay tests, only target
localized (lumped) gross delays. While these tests can be effec-

Fig. 4. Silent Data Error of Data and Address protected Memories.



tive in screening out large delay faults caused by mechanisms
such as an isolated resistive or open defect, they can miss
timing failures caused by an accumulation of distributed delays
in a circuit path caused by process variations. Such delay
variability is presenting an increasing reliability challenge at
advanced technology nodes. Even timing aware scan TDF
tests [20], developed for small delay defects (SDDs), have
not proven effective against random process variations that
can impact every component in a circuit to some degree; each
gate or standard cell can display a unique delay. Given the
billions of paths in a processor, a significant number (due to
pure statistical chance) can contain several gates significantly
slower than nominal. Therefore, because the long paths in high
performance circuits are carefully optimized during design to
all have nearly equal delays to allow fast clock rates, each
manufactured instance of a design can have a different slowest
path in silicon due to random process variations. Consequently,
as has long been recognized, reliable testing to ensure that
a circuit meets timing in the presence of significant random
gate delay variability requires a comprehensive path delay test.
Unfortunately, for many reasons, including the increase in test
time due to the very large number of paths that need to be
tested, effective scan-based path delay testing [21] has so far
not proven practical.

3) System Level Tests: In the absence of an effective scan-
based path delay test capability industry, in recent years, is
increasing relying on at-speed functional system level tests
(SLTs) as a final test screen, primarily to eliminate undetected
timing failures. At-speed functional tests have been the gold
standard for testing circuit timing in an operation environment,
but are expensive both to develop and apply. Also, the test cov-
erage is unknown and can be limited. Therefore, in practice,
low-cost scan-based structural tests, applying high coverage
test content generated using SA, TDF, and increasingly also
Cell Aware (CA) fault models are used during the wafer probe
and post packaging test insertions. A comprehensive functional
test is then performed at the final stage. This “component”
system level test (SLT), that specifically targets only the DUT
(Design Under Test), involves temporarily mounting the pack-
aged part on a test board that accurately mimics the intended
application hardware, including all its electrical characteristics.
The part is then extensively tested in functional operation for
as long as an hour or more, at full rated speeds, over a range
of user applications and operating conditions. New highly
parallelized SLT testers, that allow tight temperature control of
the device during test to replicate actual operating conditions,
have been developed to support such long test times with
high test throughput. However, the coverage of functional tests
is difficult to estimate and quantify; test escapes remain a
challenge.

B. Voltage Sensitive Failures and Timing Marginalities

1) Industrial Data on Voltage Sensitive Vmin Failures:
The need for aggressive dynamic voltage frequency scaling
(DVFS) for thermal management and temperature control in
high performance processor SOCs appears to be significantly

increasing the occurrence of a class of voltage sensitive timing
failures, being referred to as Vmin failures. These are parts that
only fail close to the minimum specified operating voltage,
while passing at higher voltages. Table II summarizes some
data from a recent industrial test experiment [22] on Intel
14 nm FinFET processors that was aimed at studying the
addition fallout observed from CA (cell aware) tests after prior
testing with SA and TDF tests. The total additional fallout
from CA tests, after screening by the traditional tests, was
4300 DPPM. Out of these, approximately 90% needed two-
cycle CA-delay tests for detection. A significant number, 1600
DPPM, were only detected close to Vmin. While the data
clearly highlights the benefits of CA-tests, the large number
of Vmin only failures raise concern about the possibility of
additional undetected voltage sensitive marginal parts in the
population that may experience failure under less favorable
circuit operating conditions. This is illustrated in Fig. 5.

2) Marginal Timing Failures: Fig. 5 plots the longest
path delay for each instance of a hypothetical collection of
manufactured ICs (Integrated Circuits) of the same design.
Worst case path delays for individual instances are different
because of manufacturing process variations. Also shown in
the figure is the time period and clock edge corresponding to
the clock frequency at which the circuit is expected to operate
correctly, down to Vmin. While more tightly clustered together
at higher supply voltages, the critical path delays increase and
spread out as the supply voltage is lowered towards Vmin.
This is because circuits slow down significantly as supply
voltage is lowered. More importantly, the increase in delay
of a slow, high threshold voltage, transistor can easily be 3 or
4 times greater close to Vmin. Low voltage operation greatly
accentuates delay variability due to process variations. The
plot in Fig. 5 illustrates this spread for a few sample VDD

values. At VDD = Vmin, the spread of worst-case delays in
the collection of circuits plotted exceeds the clock period for
some parts. These are the Vmin only failures.

Observe in Fig. 5 that path delays are much smaller than

TABLE II
DISTRIBUTION OF FALL-OUT FROM DIFFERENT CAT TESTS IN [22].

CAT-Static CAT-Delay CAT-Delay
(Before Delay Tests) (Fails at Vmax & Vmin) (Vmin Only Fails)

400 DPPM 2500 DPPM 1400 DPPM

Fig. 5. Critical Path Delays in a Collection of ICs.



the clock period at high values of VDD, allowing a significant
noise margin. Thus, even if an occasional IC may fail timing
because of an open or short defect, the bulk of the path
delays are well clear of the clock edge, and highly unlikely
to fail due to circuit noise of other environment conditions.
However, at Vmin, even if all the parts failing the timing test
are scrapped, there are many additional marginal parts near the
clock edge that narrowly pass timing as shown. These may fail
in operation under more unfavorable operating conditions, e.g.,
power supply noise, that can momentarily lower VDD further.
These are marginal parts that may malfunction and cause
occasional, unpredictable errors in operation. Unfortunately, as
explained below, the specified Vmin cannot be conservatively
raised to increase timing margins and eliminate such failures.

3) Timing Margins Reduced for Power Management: The
throughput of high-performance processors has long been lim-
ited by the need to manage heat dissipation. Even though clock
rates have not increased in two decades to hold down power
dissipation, the exponential increase in transistor counts from
technology scaling that continues to track Moore’s Law means
that all the cores in a package cannot always be operated at
their maximum frequency. Active thermal management is an
integral part of modern processors, where dynamic voltage
frequency scaling (DVFS) is used to reduce supply voltage and
clock frequency and cool off the die as needed to maintain ac-
ceptable operating temperatures. Modern designs offer the on-
chip thermal management system a choice of several operating
frequencies, each with a specified Vmin. This is illustrated
for a hypothetical processor in Table III. The Vmin values
provide guidance to thermal management on how far the
supply voltage can be lowered to save power while operating
at each frequency. Observe that since maximum operating
voltages today are well below a volt, only modest voltage,
and therefore power, reduction is available when reducing
operating frequency by each step. For this reason, Vmin cannot
be conservatively chosen; it must be set to be as low as
possible. In fact, to maximize power savings at each operating
frequency, the Vmin values are individually estimated and
assigned (as shown in Table III) to each processor core. This
is to avoid the need to be conservative and use high Vmin

values to accommodate systematic core-to core, and die-to-
die parameter variations, if common Vmin assignments are
made to an entire batch of processors. Note, however, that
each Vmin is the best estimate, based on limited test measure-
ments. Since accurate Vmin measurement involves a search
requiring repeating an accurate timing test multiple times at
different candidate Vmin voltages, the cost of obtaining a
measured Vmin value for each core at each target frequency
is prohibitive. Unfortunately, since the estimated Vmin values
cannot to overly conservative, this leaves open the possibility
of some timing failures at Vmin for a few outlier parts with
delays in the tail of the process variations distribution. These
are the parts that fail at Vmin in Fig. 5. Setting a higher, more
conservative Vmin, e.g., VDD can minimize such failures, but
since power consumption is a quadratic function of VDD, this
would significantly reduce the power savings for the many

parts with near nominal delays. It is implicitly expected that
the few parts failing at Vmin will be screened out by testing.

4) Timing Marginalities and SDEs: Unfortunately, as
shown in Fig. 5, when the tail of the worst-case path delay
distribution approaches or crosses the clock period boundary,
without any timing margin remaining to absorb electrical or
environmental noise experienced by the circuit, a significant
number of the marginal parts that barely pass the timing test
can fail in operation under worse case operating conditions.
Any such part that is not detected by subsequent functional
systems tests and ends up in a system deployed in the field
can exhibit unpredictable and intermittent errors and can
potentially be a source of SDEs.

There are hints in the published work that point to timing
marginalities being the source of many of such errors. Stud-
ies [23] have found that SDE rates are higher in very low
frequency, low voltage operation. This is consistent with slow
outlier process variability paths being the source of the failures
because the delay of such paths is greatly accentuated in low
voltage operation. It has also been found the rate of occurrence
of SDEs increases with device age. Again, modern transistors
and their circuits slow down a little over time due to aging
mechanisms such as NBTI. It is, therefore, expected that the
delay of marginal paths will increase with time, and the timing
error rate will also go up.

C. Detecting Timing Marginalities in Processors

1) Key Characteristic of Slow Outlier Paths: Recent re-
search [24] studying gate and path delay increases from
process variations has suggested that because of the extremely
large number of transistors in modern SOCs, a noticeable
number of devices can be expected to be from the extreme
tail of the variability distribution. Published work [25] has
found that transistor threshold voltages (Vth) are normally
distributed, at least out to ±5 sigma (σ). Assuming that this
distribution remains normal, since the probability of a 6σ
transistor in about 1 in a billion, every SOC incorporating
billions of transistors can be expected to contain many such
extreme transistors. A population of a million such SOCs (used
to measure DPM) will even contain thousands of 7σ transistors
and beyond. Such extreme transistors, with greatly increased
threshold voltages, can slow down dramatically when operat-
ing at the lowest Vmin corresponding to the lowest operating
frequency in a processor. This is because the transistor gate
voltage is not far above Vth when the transistor is on, resulting
in a very weak gate overdrive. For example, a logic gate
containing an extreme 7σ transistors can have 10X or more
delay compared to a similar logic gate operating at the same

TABLE III
FREQUENCY AND Vmin TABLE.

Freq Vmin

F1 Vmin 1 = 0.90V
F2 Vmin 2 = 0.79V
F3 Vmin 3 = 0.71V
F4 Vmin 4 = 0.60V
F5 Vmin 5 = 0.49V



low voltage with a nominal transistor. Such outlier transistors
can alone contribute to slow outlier paths and significant DPM
from timing failures.

The above discussion can be more formally understood
based on modeling logic gate delays using an analytical gate
delay model, such as the well validated Sakurai-Newton alpha-
power law [26]. This approximates switching delay to be
proportional to 1/(VDD − Vth)

α. The literature suggests that
for advanced FinFET technologies, the best fit α appears to be
1.25. Observe that the switching delay blows up as VDD−Vth

approaches zero. At very low power saving operating voltages
around 0.5V, the gate overdrive VDD − Vth is typically only
150-200mV for nominal Vth. Statistically extreme transistors
can raise Vth sufficiently high to reduce this overdrive to
near zero, introducing very large delays in the circuit. Failure
analysis has measured functional transistors with Vth increase
due to variability of more than 200mV.

Given this dramatic non-linear increase in delay caused by
the extreme shift in Vth in 7 − 8σ transistors, it has been
speculated [24] that many, if not most, of the rare long paths
that fail timing due to process variations get most of their
increased delay from a single extreme Vth transistor. There
is credible experimental evidence validating this conjecture.
However, given the rare occurrence rates (1 in 109 – 1012) of
7σ and 8σ transistors, direct experimental validation appears
impractical. Even meaningful Monte Carlo simulations of
circuit path delays using SPICE are very time-consuming
to perform. Nevertheless, early trends from results of a few
hundred million simulations runs appear to confirm that the
longest circuit paths due to process variations do contain an
extreme outlier transistor. These are the paths that can fail
at Vmin, or are marginal paths with the potential to fail in
operation.

2) Screening Vmin Marginal Parts: Observe that if a target
path to be delay tested contains a single extreme outlier
transistor that contributes most of the increased delay in
the path, then the path exhibits a large lumped delay at
the output of the gate containing the slow transistor, which
will likely be detected by two-cycle TDF or CA tests. (It is
important to remember here that all tests are probabilistic;
no test can guarantee that all defects in an IC are detected.)
This observation is significant, because it suggests that path
delay tests may not be essential to detect timing failures
caused by large random process variations. It also explains
the unexpected success of CA timing tests in detecting all
Vmin SLT failures in [22].

The two-cycle timing test targeting the extremely weak tran-
sistor in the slow path can be further sensitized by conducting
the test at VDD 10-25mV below Vmin. A supply voltage 25mV
below Vmin will further reduce the (VDD − Vth) term in the
Sakurai-Newton equation above, causing an extreme (> 7σ)
or (> 8σ) transistor in the path to add another 10+ nominal
gate delays, significantly slowing down the path further and
making it easier to detect. Meanwhile, delays in statistically
less extreme transistors (the assumption is that there is only
a single extreme transistor in the slow path to be detected)

will increase much less. Any risk of incorrectly failing such
paths can be mitigated by slowing the clock to increase the
clock period by a couple of nominal gate delays to absorb the
slowdown in good paths. The optimal supply voltage and clock
period/frequency to maximize detection of slow and marginal
paths while avoiding yield loss from over-testing will need to
be worked out on the test floor from experience, as is common
practice.

In summary, research is ongoing to validate and exploit the
assumption that many of the slow paths with large delays due
to process variations that cause timing failures in advanced
processors experience most of their increased delay from a
single statistically extreme outlier transistor. This should allow
traditional lumped delay scan timing tests to remain effective
in detecting such failures. Furthermore, overtesting somewhat
below Vmin with appropriate adjustment in clock frequency
can further sensitize the slow path detection during both scan
and SLT testing.

IV. THE CHALLENGE OF MEASURING SDE RATES
G. Papadimitriou, D. Gizopoulos

A. The Challenging Task of Unveiling Errors at System-Level

The main challenge of measuring SDE rates is that, per
their definition, these errors are silent, which means that no
hardware-based or software-based error handling mechanism
can detect them. The SDE rates are often low, and strongly
depend on the defective hardware structure and the executed
software workload. This means that in order to measure SDE
rates accurately, a large amount of data must be processed
coming from non-negligible numbers of faulty chips. For ex-
ample, in a typical datacenter, billions of bytes of data may be
processed every second. This requires specialized equipment
and techniques, such as hardware monitors or software-based
profiling tools [27]. Another reason why measuring SDE rates
is challenging is that these errors can be highly dependent
on the system’s configuration and workload. For example,
SDE rates may be higher in systems that operate in harsh
environments or experience frequent power fluctuations [7],
[9], [10]. They may also be higher in systems that run complex
and demanding applications. Therefore, in order to accurately
measure SDE rates, it is necessary to perform large-scale
experiments under a wide range of conditions, which is both
time-consuming and expensive; it can practically be realized
only by owners of extreme scale systems.

Enterprise and cloud data centers are installing increasingly
complex System-on-Chip (SoC) devices in large numbers,
which raises the likelihood of undetected faults that can cause
unexpected crashes or silent data errors (SDEs). Although
soft errors due to cosmic rays are widely recognized [28],
[29], the scale of data center infrastructure means that SDEs
caused by escaped manufacturing defects and in-field reli-
ability mechanisms must also be taken into account [13],
[14], [27]. Defects leading to SDEs are difficult to detect
and screen due to the multiple conditions required for their
occurrence, such as specific machine instruction sequence,
operating voltage, frequency, and temperature conditions, and



platform behavior like interrupts [14]. These factors result in
limited repeatability of SDE detection tests and the need for
extended test duration to identify failures, making it crucial to
design test methods with this behavior in mind. One method
is to execute SDE-targeting code multiple times during tests,
while another is to use pseudo-random instruction and data
sequences on every execution loop to increase the number of
unique data sequences applied by the tests.

Numerous factors can cause faults in an SoC, such as
radiation, electrical marginalities, and manufacturing defects.
Even silicon defects that are not detected (or even exist) during
manufacturing can result in faults [30], [31] in the field. The
way these faults affect the operation of a workload depends
on the circuit where the fault occurs [32], [33]. If the fault
occurs in a circuit that includes error detection and correction,
such as a cache or memory with error correction code, the
hardware can correct the error.

Silent data errors go undetected, do not interrupt the ma-
chine operation, but instead result in data errors. Data errors
are more likely to occur when faults occur in circuits that are
not used for program control, such as the SoC’s integer of
floating-point units [35]. The effects of silent data errors are
unpredictable and depend on various factors. While an incor-
rect calculation of a single pixel value may not be significant,
a data error in a financial transaction calculation could require
corrective action [27]. Since a single fault can manifest in
different ways over time due to workload variations, managing
faults that can cause SDE at scale is crucial, particularly when
millions of processing cores are installed in a data center or a
supercomputer. Lerner et al. in [27] presented that a datacenter
of modest size (i.e., 100,000 SoCs) is likely to experience at
least one SDE event per month with a rate of 10 failures in
time (FIT)1. For larger installations, frequent SDE events are
likely, even at 1 FIT. To this end, it is crucial to minimize the
rate of SDE, for example, by periodically testing the datacenter
infrastructure to identify defective hardware components that
perform wrong calculations.

B. The Need for Billions of Real Machines or Billions of Years
of Simulation

Given the challenges associated with measuring SDE rates,
discussed in the previous section, it is not surprising that many
researchers have turned to simulations as a way to study such
errors: simulation-based analysis provides the opportunity to
evaluate faulty chips even without having access to any faulty
physical chip. Simulations have their limitations. In particular,

11 FIT equals to one failure every 109 (one billion) hours of operation

measuring SDE rates at the RTL (register-transfer level) pro-
vides very high detail and accuracy, which, unfortunately, is
extremely computationally expensive. In fact, measuring real
SDE rates at the RTL is practically impossible since it can take
many years, even with the most powerful computers available
today. Table IV shows the most common ways to evaluate the
reliability (including the expected SDE rates) of computing
devices, comparing the time and cost required to complete the
study, how many of the available resources can be accessed
(or are modeled), if the faults are induced by processes that
are natural (i.e., realistic error rates) or synthetic (i.e., models
chosen by the user), if the study can be performed in the
early stages of the project or only on the final product, and
how much information can be gathered on faults generation
and propagation (observability). Alternatively, researchers can
attempt to measure SDE rates using real machines [13], [14].
However, this approach is possible only for hyperscalers, i.e.,
owners of huge fleets of computing machines to study SDE
rates accurately. For example, in order to precisely measure the
SDE rates, billions of machines may be required [13], [14].
Even with the proliferation of cloud computing and big data
platforms, it is hard to obtain access to such large numbers of
machines. For microprocessors consisting of several million
bits and programs consisting of several billions of cycles,
determining the real probability of failure (or the FIT rate)
is an extremely difficult, if at all possible, task. Specifically,
there are two stages at which the FIT rate is measured.

Early stages: when both the design of the microprocessor
hardware and the design of the software are under development
and major modifications can be applied. In early stages,
the FIT rate of a microprocessor, program pair is actually
estimated or predicted and not really measured. This is because
there are certain parts of the hardware structure of the micro-
processor that are still unknown in detail or are deliberately
removed from the abstraction to facilitate the design and
simulation of the system. Analysis of the failure rates at early
stages can be only implemented using architectural (ISA),
or microarchitectural models of the system, both of which
are available very early in the design flow. Architectural
models do not include any hardware information, but only the
ISA visible hardware locations (memory and registers) [36].
Microarchitectural models (also referred to as performance
models) have a significant detail of the microprocessor hard-
ware: they contain all major hardware storage components that
occupy a very large part of the final silicon estate (registers,
register files, buffers, queues, caches, predictors, etc.) but they
model the combinational logic and the random sequential logic
(state machines in control) only functionally. Program exe-

TABLE IV
SILENT DATA ERROR RATE MEASUREMENT METHODOLOGIES [34].

Evaluation Method Time Needed Cost Accessible Resources Fault Source Availability Observability
Field, Lifetime data months/years very high all natural final product limited

Beam testing hours high all natural final product limited
Software-level fault injection hours low limited synthetic early/final product medium

Architecture-level fault injection days low limited synthetic early medium
Microarchitecture-level fault injection days/weeks low most synthetic early very high

RTL fault injection years low all synthetic late very high



cutables (assembly/machine instructions) can run on both an
architectural and a microarchitectural model. The architectural
model is typically around three orders of magnitude faster
to simulate than the more detailed microarchitectural one.
Moreover, microarchitecture-level models can also be used for
bug modeling during the CPU validation phase, e.g., [31], [37].

Late stages: when the microprocessor design, as well as
the program design, are very close to completion and design
changes (particularly to the hardware) are either impossible
or extremely costly. At these stages, the failure rate of a mi-
croprocessor, program pair can be actually measured because
almost all details of the hardware design are in place, unlike
the early models. In late stages, measurement of the failure
rates are mainly employed for validation purposes. Late stages
measurements can be realized when the program runs on two
setups: a gate-level (RT level) model of the microprocessor de-
sign, and an actually manufactured silicon chip. Unfortunately,
the simulation speed of such fine-grained late stage models is
prohibitive to run reasonably long programs. The simulation
throughput of the gate level models is typically three or
more orders of magnitude slower than the microarchitecture
(performance) models. Therefore, the combined effect of the
hardware design and software design on the failure rate of the
system cannot be measured at the gate or the RTL.

Finally, measurement of the failure rate on actually man-
ufactured chips is the only true physical experiment which
runs at the true speed of silicon. The major drawback of
this experiment is it requires expensive accelerating testing
of the chips with dense beams of particles. Such particles
(neutrons or others) are blindly hitting the chip when the
program runs, and the failing executions (output corruptions or
abnormal terminations) are recorded. There is no way to isolate
the hardware spot that was affected and the bits that were
flipped. However, the failure rates of such physical beaming
experiments are employed by the industry to better emulate
the actual physical conditions in an accelerated setup to reach
statistically significant results for the failure rates.

Summary: Typically, RAS architects rely either on Sta-
tistical Fault Injection (SFI) [38] or on analytical methods,
such as the Architecturally Correct Execution (ACE) anal-
ysis [39], to provide insights into the programs’ resiliency
toward transient faults, because both methods aim to report
the cross-layer vulnerability. Unlike lower-level simulation
models (e.g., gate and RTL), microarchitecture-level fault-
injection based on performance models allows deterministic
end-to-end execution of large workloads on top of an operating
system, i.e., full system analysis, which is impossible at lower
levels [33], [36]. Further, injection on RTL models [40] would
marginally augment vulnerability analyses with combinational
logic vulnerability, since logic has very low raw failure rates
compared to storage elements.

We, therefore, employ GeFIN [6], which has been developed
and extended on top of the gem5 simulator [41], which is a
state-of-the-art microarchitecture-level simulator. Recent stud-
ies have shown that fault injection based on microarchitecture-
level models in gem5 simulator can provide vulnerability

results of the entire CPU during 18 days [33], in contrast
to RTL fault injections, which could need several years (see
Table IV). In the next subsections, we summarize a number of
recent vulnerability studies using our gem5-based simulation
and injection set of tools.

C. SDE Failures in Time Analysis

Failures in Time (FIT) rate of a device is the number of
failures that can be expected in one billion (109) device-hours
of operation. For each hardware structure in a microprocessor,
a different FIT is computed using the formula below.

FITstruct = AV Fstruct × rawFITbit ×#Bitsstruct

The FIT of the structure is determined by three components:
the FITBIT (or raw FIT) rate, which is determined by the
fabrication technology and expresses the fault rate of a single
bit, the number of bits of the structure and the SDE AVF of the
structure, which is affected by the microarchitecture and the
running workload. The raw FIT rate expresses the number of
SDEs that will be introduced in the component, while the AVF
(architectural vulnerability factor) is the derating factor that
quantifies how many of these errors will lead to a failure. The
product equals the FIT rate of a component. The SDE FIT rate
of the entire CPU is calculated by adding the individual SDE
FITs of the individual hardware structures. In the following
subsections, the AVF is determined using microarchitecture
level fault injection on gem5 simulator.

Fig. 6 shows the SDE FIT rate for each technology
node [17]. The red color indicates the percentage of SDE
FIT due to multi-bit faults, which starts from 0% in 250 nm
node and reaches a high 12% in 22 nm. We can also see
that the SDE FIT for each technology node is increasing until
the point of 130 nm. After that, the SDE FIT rate starts to
decrease, reaching the lowest FIT values at 22 nm. These
values correspond to the exact same microarchitecture with
the exact same configuration. The differences observed are
due to the much smaller area that the chip occupies in the
higher density technologies, which results in a significantly
smaller number of particles that will eventually strike the
microprocessor.

Fig. 6. SDE FIT for the entire CPU core for different technology nodes
(numbers inside the green bars) due to transient faults. Red color areas
correspond to the contribution of multi-bit upsets. The graph shows only the
FIT rate for SDEs [17].



Fig. 7. Cortex A5 Bare-metal and Linux beam FIT rates for SDEs [34].

D. SDE Rates for Bare-metal versus OS Executions

In this section, we summarize a characterization study
which is performed through physical beam experiments on
an Arm Cortex-A5 microprocessor, to show the contribution
of OS (Operating System) to the SDE rates. To this end,
we show a comparison between SDE FIT rates of bare-metal
executions and with Linux OS. In Fig. 7 we can observe that
the average SDE rates for A5 is 23.7% for bare metal and
59.3% for Linux. It is also clear from Fig. 7 that the SDE
rate is constantly higher when the applications run on top of
Linux, in contrast to bare-metal execution. Specifically, we
can see that the difference of the SDE rates between bare-
metal and Linux OS can be as high as 6.7×. However, as we
discussed earlier, during beam experiments it is very difficult
to investigate the SDE rates in finer granularity. To this end,
in the next subsection we show results from the state-of-the-
art microarchitecture-level fault injection framework, named
GeFIN [42] which is based on the gem5 simulator.

It is essential to note that there have been several recent
attempts for validating the results of microarchitecture-level
models using physical accelerated beam experiments [34],
[43]. Fig. 8 shows the SDE FIT rates comparison between
beam and GeFIN fault injection. If the FIT rate obtained with
beam experiments is higher than the fault injection the value
is represented as positive; negative otherwise. It is clear from
Fig. 8 that the GeFIN SDE FIT rate prediction is very close
to the one measured with beam experiments.

E. SDE Correlation to on-chip storage structures

In this section, we examine the relationship between SDEs
and the major on-chip memory structures of modern micropro-
cessors. It is essential to evaluate the SDE rates of individual
hardware structures to understand their susceptibility. Fig. 9
illustrates the susceptibility of each structure to non-benign
faults that are not masked at the hardware level. An SDE can
occur if a hardware error eventually becomes available at the
software and silently affects the execution of the program.

Fig. 8. Beam and fault injection SDE FIT rates comparison [34].

Fig. 9. The percentage of hardware corruptions at the software level (i.e.,
non-masked errors at hardware level) that eventually result in SDE.

Therefore, in Fig. 9 show the percentage of these errors to
result in an SDE. Our first and most significant observation is
that the Re-Order Buffer (ROB), Load Queue (LQ), and Store
Queue (SQ) have a zero probability of experiencing SDEs.
This is because any fault that occurs in these structures is
not architecturally visible due to dependency graph checks
that fail before the commit stage. Memory structures like the
ROB, LQ, and SQ, which are deep in the microprocessor’s
pipeline, ensure proper instruction ordering when instructions
are ready to commit. Any corruption in these structures may
lead to dependency graph check failures before the commit
stage and result in a crash.

V. CONCLUSION

The problem of silent data errors (SDEs) in today’s micro-
processors is a critical challenge that demands urgent atten-
tion. With the emergence of smaller feature sizes, complex
computational structures, and specialized silicon features, the
potential for temporary computational errors that go unnoticed
during manufacturing tests is on the rise. SDEs may not be
addressed by methods such as microcode updates, and can
be linked to specific components within the microprocessor.
Further, since the nature of these failures is silent, incorrect
computation happens without any indication of an error. As
such, it is crucial to develop effective methods for detecting,
mitigating, and preventing SDEs in microprocessor chips
to ensure reliable and accurate computing performance. We
described the challenges of measuring SDE rates in both real
microprocessors and simulation models (based on microarchi-
tectural modeling on gem5). The study of SDEs is an ongoing
area of research, and it is essential to continue to explore
new approaches to address this critical issue in the design
and implementation of microprocessors.

ACKNOWLEDGMENT

Adit Singh’s research was supported in part by the
US National Science Foundation under grant CCF-1910964.
George Papadimitriou and Dimitris Gizopoulos’ work has
received funding in part from the EU Horizon Europe re-
search and innovation programme under grant agreements No
101070238 (NEUROPULS), No 101093062 (Vitamin-V), and
No 101097224 (REBECCA), and in part by research gifts from
Meta and Intel.



REFERENCES

[1] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley,
and E. V. Hensbergen, “Addressing failures in exascale computing,”
Int. J. High Perform. Comput. Appl., vol. 28, no. 2, p. 129–173, may
2014. [Online]. Available: https://doi.org/10.1177/1094342014522573

[2] C. Constantinescu, I. Parulkar, R. Harper, and S. Michalak, “Silent data
corruption — myth or reality?” in 2008 IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC (DSN),
2008, pp. 108–109.

[3] R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC
Subcommittee Report, 2014.

[4] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba, “Impact of
scaling on neutron-induced soft error in srams from a 250 nm to a 22
nm design rule,” IEEE Transactions on Electron Devices, vol. 57, no. 7,
pp. 1527–1538, 2010.

[5] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on a
supercomputer,” in SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2016, pp. 645–655.

[6] A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, S. Ganapathy, and
J. Kalamatianos, “Assessing the effects of low voltage in branch pre-
diction units,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019, pp. 127–136.

[7] P. Koutsovasilis, C. D. Antonopoulos, N. Bellas, S. Lalis, G. Papadim-
itriou, A. Chatzidimitriou, and D. Gizopoulos, “The impact of cpu
voltage margins on power-constrained execution,” IEEE Transactions
on Sustainable Computing, vol. 7, no. 1, pp. 221–234, 2022.

[8] A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, S. Ganapathy,
and J. Kalamatianos, “Analysis and characterization of ultra low power
branch predictors,” in 2018 IEEE 36th International Conference on
Computer Design (ICCD), 2018, pp. 144–147.

[9] A. Chatzidimitriou, G. Papadimitriou, and D. Gizopoulos, “Healthlog
monitor: A flexible system-monitoring linux service,” in 2018 IEEE 24th
International Symposium on On-Line Testing And Robust System Design
(IOLTS), 2018, pp. 183–188.

[10] D. Gizopoulos, G. Papadimitriou, A. Chatzidimitriou, V. J. Reddi,
B. Salami, O. S. Unsal, A. C. Kestelman, and J. Leng, “Modern hardware
margins: Cpus, gpus, fpgas recent system-level studies,” in 2019 IEEE
25th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2019, pp. 129–134.

[11] A. Chatzidimitriou, G. Papadimitriou, and D. Gizopoulos, “Healthlog
monitor: Errors, symptoms and reactions consolidated,” IEEE Transac-
tions on Device and Materials Reliability, vol. 19, no. 1, pp. 46–54,
2019.

[12] G. Papadimitriou, A. Chatzidimitriou, D. Gizopoulos, V. J. Reddi,
J. Leng, B. Salami, O. S. Unsal, and A. C. Kestelman, “Exceeding con-
servative limits: A consolidated analysis on modern hardware margins,”
IEEE Transactions on Device and Materials Reliability, vol. 20, no. 2,
pp. 341–350, 2020.

[13] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent Data Corruptions at Scale,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.11245

[14] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju,
P. Ranganathan, D. E. Culler, and A. Vahdat, “Cores That Don’t
Count,” in Proceedings of the Workshop on Hot Topics in Operating
Systems, ser. HotOS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 9–16. [Online]. Available:
https://doi.org/10.1145/3458336.3465297

[15] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[16] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal,
J. Liu, B. Khessib, K. Vaid, and O. Mutlu, “Characterizing appli-
cation memory error vulnerability to optimize datacenter cost via
heterogeneous-reliability memory,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014,
pp. 467–478.

[17] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas, and
D. Gizopoulos, “Multi-bit upsets vulnerability analysis of modern mi-

croprocessors,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 119–130.

[18] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2015, pp. 415–426.

[19] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava,
M. Keim, J. Schloeffel, and A. Fast, “Cell-aware test,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 33, no. 9, pp. 1396–1409, 2014.

[20] X. Lin, K.-h. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi,
R. Klingenberg, Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware atpg
for high quality at-speed testing of small delay defects,” in 2006 15th
Asian Test Symposium, 2006, pp. 139–146.

[21] C. J. Lin and S. Reddy, “On delay fault testing in logic circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 6, no. 5, pp. 694–703, 1987.

[22] W. Howell, F. Hapke, E. Brazil, S. Venkataraman, R. Datta, A. Glowatz,
W. Redemund, J. Schmerberg, A. Fast, and J. Rajski, “Dppm reduction
methods and new defect oriented test methods applied to advanced finfet
technologies,” in 2018 IEEE International Test Conference (ITC), 2018,
pp. 1–10.

[23] T. Claburn. (2021) Fyi: Today’s computer chips are so advanced, they
are more ’mercurial’ than precise – and here’s the proof. Accessed:
March 2023. [Online]. Available: https://www.theregister.com/2021/06/
04/google chip flaws/

[24] A. D. Singh, “Understanding vmin failures for improved testing of
timing marginalities,” in 2022 IEEE International Test Conference (ITC),
2022, pp. 372–381.

[25] M. D. Giles, N. Arkali Radhakrishna, D. Becher, A. Kornfeld, K. Mau-
rice, S. Mudanai, S. Natarajan, P. Newman, P. Packan, and T. Rakshit,
“High sigma measurement of random threshold voltage variation in
14nm logic finfet technology,” in 2015 Symposium on VLSI Technology
(VLSI Technology), 2015, pp. T150–T151.

[26] T. Sakurai and A. R. Newton, “Alpha-power law mosfet model and its
applications to cmos inverter delay and other formulas,” IEEE Journal
of Solid-state Circuits, vol. 25, pp. 584–594, 1990.

[27] D. P. Lerner, B. Inkley, S. H. Sahasrabudhe, E. Hansen, L. D. R. Munoz,
and A. v. de Ven, “Optimization of tests for managing silicon defects in
data centers,” in 2022 IEEE International Test Conference (ITC), 2022,
pp. 578–582.

[28] T. C. May and M. H. Woods, “A new physical mechanism for soft
errors in dynamic memories,” in 16th International Reliability Physics
Symposium, 1978, pp. 33–40.

[29] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305–316, 2005.

[30] M. D. McCluskey and A. Janotti, “Defects in semiconductors,” Journal
of Applied Physics, vol. 127, no. 19, p. 190401, 2020. [Online].
Available: https://doi.org/10.1063/5.0012677

[31] G. Papadimitriou, D. Gizopoulos, A. Chatzidimitriou, T. Kolan, A. Koyf-
man, R. Morad, and V. Sokhin, “Unveiling difficult bugs in address
translation caching arrays for effective post-silicon validation,” in 2016
IEEE 34th International Conference on Computer Design (ICCD), 2016,
pp. 544–551.

[32] S. Mukherjee, Architecture Design for Soft Errors. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2008.

[33] G. Papadimitriou and D. Gizopoulos, “Avgi: Microarchitecture-driven,
fast and accurate vulnerability assessment,” in 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2023,
pp. 935–948. [Online]. Available: https://doi.org/10.1109/HPCA56546.
2023.10071105

[34] P. R. Bodmann, G. Papadimitriou, R. L. R. Junior, D. Gizopoulos, and
P. Rech, “Soft error effects on arm microprocessors: Early estimations
versus chip measurements,” IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2358–2369, 2022.

[35] I. Tsiokanos, G. Papadimitriou, D. Gizopoulos, and G. Karakonstantis,
“Boosting microprocessor efficiency: Circuit- and workload-aware as-
sessment of timing errors,” in 2021 IEEE International Symposium on
Workload Characterization (IISWC), 2021, pp. 125–137.

[36] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulnera-
bility stack: Transient fault effects across the layers,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 902–915.



[37] Y. Sazeides, A. Gerber, R. Gabor, A. Bramnik, G. Papadimitriou,
D. Gizopoulos, C. Nicopoulos, G. Dimitrakopoulos, and K. Patsidis,
“Idld: Instantaneous detection of leakage and duplication of identifiers
used for register renaming,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022, pp. 799–814.

[38] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
and Test in Europe Conference and Exhibition, 2009, pp. 502–506.

[39] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proceedings. 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., 2003, pp. 29–40.

[40] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. Kim, “Robust system
design with built-in soft-error resilience,” Computer, vol. 38, no. 2, pp.

43–52, 2005.
[41] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, aug
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[42] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of microarchitecture-
level reliability assessment: Throughput and accuracy,” in 2016 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2016, pp. 69–78.

[43] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2019, pp. 26–38.


