

Call: H2020-FETPROACT-2020-01

Grant Agreement no. 101016776

Deliverable D5.5 – Co-optimized hardware/ NN
architecture for ASR/ MT - V1

Start date of the project: 1st January 2021
Duration: 50 months
Project Coordinator: Cristell MANEUX - University of Bordeaux
Contact: Cristell MANEUX - cristell.maneux@ims-bordeaux.fr

Ref. Ares(2022)7426382 - 26/10/2022

D5.5_FVLLMONTI_P1-UBX-20221024 2

DOCUMENT	CLASSIFICATION	
Title Co-optimized hardware/ NN architecture for ASR/ MT - V1
Deliverable D5.5
Estimated Delivery 30/10/2022 (M20+2)
Date of Delivery Foreseen 30/10/2022 (M20+2)
Actual Date of Delivery 30/10/2022 (M20+2)
Authors Jean-Luc Rouas – P1 – UBx, Leïla Ben Letaifa – P1 – UBx, Georgeta

Bordea – P1 – UBx
Approver
Internal reviewers

Cristell Maneux (UBx)
G. Ansaloni (EPFL)

Work package WP5
Dissemination PU
Version V1.3
Doc ID Code D5.5_FVLLMONTI_P1-UBX-20221024
Keywords Neural Network Optimization, Automatic Speech Recognition, Machine

Translation

DOCUMENT	HISTORY	
VERSION PUBLICATION DATE CHANGE

1.0 05.10.2022 Initial version from UBx (J.-L. Rouas)
1.1 10.10.2022 Correction by UBx (L. Ben Letaifa, G. Bordea)
1.2 11.10.2022 Internal review by G. Ansaloni (EPFL)
1.3 24.10.2022 Final version (J.-L. Rouas, L. Ben Letaifa)

DOCUMENT	ABSTRACT	
This document describes the first version of the co-optimization between hardware requirements and neural
network transformer architecture for automatic speech recognition (ASR) and machine translation (MT).

Task 5.3 focuses on size reduction of the NN configurations from T.5.1 by using constraints (e.g. NN and
kernel size, weight values, types) and quantization (low bit precision for parameter storage enabling low bit
hardware operations) based on different hardware configurations from T.5.2 (e.g. computing capabilities,
predefined topologies, predefined weight values, Network Resilience). Trade-offs between NN accuracy and
N2C2 resource usage will be explored.

From T.5.1 we decided to use Transformer-based models, since they achieve state-of-the-art performance in
various areas of machine learning, including automatic speech recognition. However, their cost in terms of
computational power, memory or energy consumption can be exorbitant, hence the interest in compression
techniques that take into account the hardware constraints. Transformer models are mostly composed of
attention and feedforward components. We propose to reduce the size of the transformer model of our end-
to-end speech recognition system by decreasing the number and precision of linear layer parameters.
Specifically, we investigate the impact of weight pruning and model quantization on system performance.

D5.5_FVLLMONTI_P1-UBX-20221024 3

Experiments carried out on several speech recognition datasets for different languages show that the
memory footprint of Transformer Speech Recognition systems can be reduced by up to 84% with an
acceptable loss of accuracy using classical pruning and quantization techniques.

After studying the transformer architecture, we proposed a new pruning method, “variable scale pruning”
which assigns a decreasing pruning rate according to the depth of the layers. Evaluation on different
databases shows that this method outperforms conventional local and global pruning methods and that the
pruned model can be compressed up to 57% with a slight decrease in accuracy.

We are currently investigating the usage of similar techniques for our text-to-text translation systems and
we will then address the size reduction of the cascade model, composed by a speech-to-text transcription
stage followed by a text-to-text translation stage.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101016776.

D5.5_FVLLMONTI_P1-UBX-20221024 4

TABLE	OF	CONTENT	
DOCUMENT CLASSIFICATION .. 2

DOCUMENT HISTORY .. 2

DOCUMENT ABSTRACT ... 2

TABLE OF CONTENT ... 4

LIST OF FIGURES AND TABLES ... 4

LIST OF ACRONYMS / GLOSSARY ... 6
1. Introduction .. 7
2. Compression techniques .. 7
I. Quantization ... 7
II. Pruning .. 7
3. Transformer model ... 8
I. Model Description .. 8
II. Model Architecture ... 10
4. Baseline Models & Preliminary Experiments .. 10
I. Data description ... 10
II. Trained models ... 11
III. Results .. 11
5. Further network optimisations ... 13
I. Model weights analysis ... 13

1. Number of parameters ... 13
2. Weight distribution (encoder layers) .. 13

II. Feedforward layers adaptive pruning ... 15
1. Method ... 15
2. Experiments and results ... 16

6. CONCLUSION .. 21
7. REFERENCES .. 21

LIST	OF	FIGURES	AND	TABLES	

D5.5_FVLLMONTI_P1-UBX-20221024 5

Figure 1: Overview of the transformer architecture (adapted from [8]) ... 8
Figure 2: Transformer main components .. 9
Figure 3: The proportion of weights of convolution layers (Conv), multi-head attention layers (MHA),
feedforward layers (FF) and remaining layers (Rest) for the Libri-trans, Ester, and Voxforge models. 13
Figure 4: Class weight distribution across the encoder blocks for Libritrans .. 14
Figure 5: Class weight distribution across the encoder blocks for Ester ... 14
Figure 6: Class weight distribution across the encoder blocks for VoxForge .. 15
Figure 7: Error rate as a function of global and local pruning rate for Libritrans .. 16
Figure 8: Error rate as a function of global and local pruning rate for VoxForge .. 17
Figure 9: Development error rate as a function of sparsity for the two ASR systems Libri-trans (top) and
Voxforge (bottom) after applying local, global and variable scale pruning. .. 19
Figure 10: Test error rate as a function of sparsity for the two ASR systems Libri-trans (top) and Voxforge
(bottom) after applying local, global and variable scale pruning .. 20

Table 1: Duration (in hours) of the three datasets .. 11
Table 2: ASR models specifications - Architecture: number of encoder and decoder blocks (Enc/Dec),
dimension of hidden layers (FF Dimension) and attention layers (ATT Dimension) and number of attention
heads (Heads) - Number of parameters (Millions) - Error rate (% WER/CER for VoxForge) 11
Table 3 Size of initial gzip-compressed and pruned gzip-compressed models (in megabytes) and their ratio
 ... 12
Table 4 Size of gzip-compressed quantized models (in megabytes) and their ratio to the initial gzip-
compressed models ... 12
Table 5 Initial and final error rates, size of initial gzip-compressed and pruned+quantized gzip-compressed
models (in megabytes) and their ratio .. 12
Table 6: Adaptive pruning of the Libri-trans model: WER and Sparsity for several pairs of (U0, V0) The fixed
parameters are: attention layer pruning rate = 40% and α = β = 0.01. .. 18

D5.5_FVLLMONTI_P1-UBX-20221024 6

LIST	OF	ACRONYMS	/	GLOSSARY	
ASR: Automatic Speech Recognition
CER: Character Error Rate
CONV: Convolution
D: Deliverable
ESTER: Evaluation of Speech broadcast news Enriched Transcription systems
FF: Feed-Forward
M: Month of the project
MHA: Multi-Head Attention
MT: Machine Translation
WER: Word Error Rate
WP: Work Package

D5.5_FVLLMONTI_P1-UBX-20221024 7

1. Introduction	

Neural network compression methods include quantization [1], pruning [2], knowledge distillation [3], matrix
decomposition [4] and parameter sharing [5]. Although most of these methods were originally proposed for
convolutional neural networks, all of them and others such as the pruning of the attention heads [6], [7] are
directly applicable to the transformer model. Compared to basic models such as convolutional or recurrent
neural networks, a transformer model [8] has a relatively complex architecture composed of several parts
such as embedding layers, self-attention layers and feedforward layers. Thus, the effect of compression
methods can vary when applied to different parts of it [5].

Research on transformer model compression in end-to-end speech recognition has mainly focused on
quantization [9] and parameter sharing [10]. In this document we review the quantization method and two
kinds of pruning schemes: local and global pruning. We then perform baseline experiments to assess the
gains obtained using the two techniques and their combination.

After studying in detail the transformer architecture, we proposed a new pruning method, “variable scale
pruning”. This method allows to optimize the pruning rate according to the depth of the network which
results in further gains in model size while preserving the accuracy.

2. Compression	techniques	
Model compression methods reduce the inference costs of trained models. In particular, we consider two
compression techniques: quantization and pruning.

I. QUANTIZATION
By default, most systems use float 32 types to represent variables and weights. Quantization replaces floating
points with integers leading, to less memory consumption and faster calculations [1].

Quantization maps a floating point value 𝑥 in [𝑎, 𝑏] to a 𝑘 − 𝑏𝑖𝑡 integer 𝑥! in [−2"#$, 2"#$ − 1].

𝑥! = 𝑟𝑜𝑢𝑛𝑑 9
𝑥 − 𝑎
𝜕

;

where 𝛿 = %#&
'!#$

 . In the case that 𝑥 in not in the range of [𝑎, 𝑏], the clamp operator is applied:

𝑐𝑙𝑎𝑚𝑝(𝑥; 𝑎, 𝑏) = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥, 𝑎), 𝑏)

The de-quantization function is defined as:

𝐷E𝑥!F = 𝑥! ∗ 𝛿 + 𝑎

Different quantization approaches have been proposed and can be classified into two categories: post-
training quantification and quantification aware training [9]. Post-training quantization trains the model
using weights and float32 inputs, then quantizes the weights. Its main advantage is that it is simple to apply.
Quantization-aware training quantizes the weights during training. Here, even the gradients are calculated
for the quantized weights.

II. PRUNING
Deep learning models are often over-parameterized [2], [11], with many insignificant weights that contribute
only slightly to the inference of the model. These weights can be set to zero without significantly affecting
performance [2], a technique typically referred to as pruning. The importance of the weights is often
determined by their magnitude or their gradients [5].

D5.5_FVLLMONTI_P1-UBX-20221024 8

In general, there are two types of pruning:

• unstructured pruning [11], which removes individual weights. Substituting the value of the weight
with zero in a weight matrix is equivalent to pruning a connection. This pruning is also called sparse
pruning because it results in sparse matrices.

• structured pruning [12] focuses on pruning blocks of weights, for example, by deleting entire
channels at a time. In practice, structured pruning sets an entire row or column of a weight matrix
to zero, which is the same as deleting a neuron.

Pruning can be incorporated into the training process as an additional step between training epochs (iterative
pruning) [9], applied all at once after the model training is complete [7] (one-shot pruning), or applied
between fine tuning steps [13]. Based on whether the pruning is applied globally to all model parameters or
is calculated independently for each layer, this technique is called global pruning or local pruning. Global
pruning groups all the parameters of the layers and selects a global fraction of them to prune. Local pruning
removes a fixed percentage of parameters from each layer.

3. Transformer	model	

I. MODEL DESCRIPTION

The Automatic Speech Recognition (ASR) Transformer model [14] is a sequence-to-sequence model that
maps an input sequence of acoustic features (𝑥$, 𝑥', … 𝑥() of length 𝑇 to an output sequence of characters
(𝑦$, 𝑦', . . , 𝑦)) of length 𝐿. Its architecture can be divided into two parts namely the encoder and the decoder.
The encoder converts the input sequence into an intermediate sequence of encoded features (ℎ$, ℎ', … , ℎ*)
of length 𝑁. The decoder predicts a new character 𝑦+ based on the encoded features (ℎ$, ℎ', … , ℎ*) and the
previous decoded characters (𝑦$, 𝑦', … , 𝑦+#$). Both the encoder and the decoder are composed of a stack of
attention and feedforward network blocks. An overview of the transformer architecture is displayed on
Figure 1.

Figure 1: Overview of the transformer architecture (adapted from [8])

D5.5_FVLLMONTI_P1-UBX-20221024 9

Our ASR transformer follows the same architecture as [15]. The input acoustic features are subsampled using
two convolution layers (CONV) before being fed into the encoder. Both the encoder and the decoder are
composed of multi-head attention (MHA) and feedforward (FF) layers, each followed by a residual connection
and normalization. A simplified representation of the transformer model is shown on Figure 2.

Figure 2: Transformer main components

D5.5_FVLLMONTI_P1-UBX-20221024 10

II. MODEL ARCHITECTURE

The self-attention operation allows frames to gather context from all timesteps and build an informative
sequence of high level [15]. Specifically, the inputs of each layer are projected into queries 𝑄, keys 𝐾, and
values 𝑉 with 𝑄 ∈ 𝑅,"∗.", 𝐾 ∈ 𝑅,!∗.! and 𝑉 ∈ 𝑅,#∗.#. 𝑡 ∗ are the elements numbers in different inputs and
𝑑 ∗ are the corresponding element dimensions. Scaled Dot-Product Attention [8] is then computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 X
𝑄𝐾(

Y𝑑"
Z𝑉	

The multi-headed attention is obtained by performing this calculation ℎ times. ℎ is the number of heads.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑$, … , ℎ𝑒𝑎𝑑/)𝑊0
where
ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛E𝑄𝑊1

2 , 𝐾𝑊1
3 , 𝑉𝑊1

4F

The projection matrices are 𝑊1

2 ∈ 𝑅.$%&'(∗.", 𝑊1
3 ∈ 𝑅.$%&'(∗.!, 𝑊1

4 ∈ 𝑅.$%&'(∗.# and 𝑊0 ∈ 𝑅/∗.#∗.$%&'(.
In this work, 𝑑" = 𝑑! = 𝑑5 = 𝑑67.8+/ℎ.

The outputs of multi-head attention go through a 2-layer position-wise feedforward network (FFN) with
hidden size 𝑑99.

𝐹𝐹𝑁(𝑥) = 𝑊'𝑅𝑒𝐿𝑈(𝑊$𝑥 + 𝑏$) + 𝑏'

𝑏$ ∈ 𝑅.)) and 𝑏' ∈ 𝑅.$%&'(are the biases. The weight matrices are 𝑊$ ∈ 𝑅.$%&'(∗.)) and
𝑊' ∈ 𝑅.))∗.$%&'(.

4. Baseline	Models	&	Preliminary	Experiments	

We have developed transformer models for three languages including English, French and Italian using Libri-
trans [16], Ester [17], and Voxforge [18] databases respectively.

I. DATA DESCRIPTION

The Libri-trans, Ester and Voxforge corpora are produced within the framework of the Librivox project, the
French national ESTER project and the Voxforge project. The Libri-trans and Voxforge recordings are
extracted from audiobooks, and the Ester recordings are radio broadcasts news. Each dataset is divided into
three parts: train, development (dev) and test as described in Table 1. The train data is used for model
training. The dev and the test parts are dedicated to evaluation.

D5.5_FVLLMONTI_P1-UBX-20221024 11

 Libritrans Ester Voxforge
Train 230 231 18
Dev 2 5.45 1
Test 3.5 6.5 1

Table 1: Duration (in hours) of the three datasets

II. TRAINED MODELS

Baseline ASR transformer models are developed and evaluated with the Espnet toolkit [19]. This toolkit
involves Kaldi [20] tools for data processing and parameter extraction and Pytorch1 modules for model
estimation.
First, by using three different speeds (0.9, 1.0, and 1.1) for speed perturbation data augmentation, the train
dataset amount tripled. Then, 80 filter bank coefficients are extracted and normalized with respect to the
mean and variance. Transcripts are represented by sub-word units, namely characters for the Ester and
Voxforge systems and byte-pair coding subwords for the Libritrans system. Finally, several transformer
architectures are evaluated.

Table 2 shows the architecture of the best transformer models, their number of parameters (in millions) and
the error rates of the ASR systems. We consider the word errors (WER) of the Libri-trans and Ester systems
and the character errors (CER) of the Voxforge system.

 Libritrans Ester Voxforge
Architecture details
 Enc/Dec 12/6 18/6 12/6
 FF Dimension 1024 2048 2048
 ATT Dimension 256 512 256
 Heads 4 4 4
Parameters (Millions) 27.92 89.64 35.07
Error rate (%) 6.6 14.1 9.1

Table 2: ASR models specifications - Architecture: number of encoder and decoder blocks (Enc/Dec), dimension of hidden layers
(FF Dimension) and attention layers (ATT Dimension) and number of attention heads (Heads) - Number of parameters (Millions) -
Error rate (% WER/CER for VoxForge)

III. RESULTS

First, one-shot pruning is applied to the trained end-to-end ASR models for three different languages (French,
English, Italian), applying either global or local pruning while varying the pruning rate. For the best trade-off
between error and compression rates, we tolerate a relative increase in error rate of 10%. The best trade-
offs are achieved with pruning rates of 33% for Libri-trans (English), 37% for Ester (French), 55% for Voxforge
(Italian). After applying gzip compression, the disk space occupied by the pruned models is about half of the
space occupied by the initial models. Details are given in Table 3.

1 www.pytorch.org

D5.5_FVLLMONTI_P1-UBX-20221024 12

 LIBRITRANS ESTER VOXFORGE
Initial model (MB) 99 318 124
Pruned model (MB) 72 228 72
RATIO (x - %) 1.3x - 72% 1.4x - 71% 1.7x - 58%

Table 3 Size of initial gzip-compressed and pruned gzip-compressed models (in megabytes) and their ratio

We then studied the effect of quantization. Indeed, initially all model parameters are stored and processed
in real 32-bit format. An 8-bit integer quantization is performed on the encoder and decoder weight matrices.
Activations are quantized on the fly during inference and stored as 32-bit real values. For all systems, the
performance decrease is insignificant (less than 0.1%). Regarding the model size, we observe that quantized
models are more than 70% smaller (Table 4).

 LIBRITRANS ESTER VOXFORGE
Initial model (MB) 99 318 124
Quant. model (MB) 23 72 29
RATIO (x - %) 4.3x - 23% 4.4x - 22% 5.3x - 23%

Table 4 Size of gzip-compressed quantized models (in megabytes) and their ratio to the initial gzip-compressed models

Pruning and quantization are finally applied successively for a better accuracy/size trade-off. This is
performed in three steps:
1) set the pruning rate
2) prune the model
3) quantize the model

The initial and final models are then compressed using gzip and their size ratios are computed to assess the
joint contribution of pruning and quantization. The results are given inTable 5.

 LIBRITRANS ESTER VOXFORGE
Initial model (MB) 99 318 124
Pruned + Quant.
model (MB)

20 68 20

RATIO (x - %) 4.9x - 20% 4.6x - 21% 6.2x - 16%
Initial error (%) 6.6 14.1 9.1
Pruned+Quant
error(%)

7.2 15.6 10.1

Table 5 Initial and final error rates, size of initial gzip-compressed and pruned+quantized gzip-compressed models (in megabytes)
and their ratio

A final compression of about 82% for Voxforge (Italian), 80% for Libri-trans (English) and 79% for Ester
(French) is achieved. Experiments carried out on several speech datasets from different languages show that
the memory footprint of Transformer Speech Recognition systems can be reduced by up to 82% with an
acceptable loss of accuracy using pruning and quantization techniques. These results are published in an
international conference paper [21].

To further optimize the networks, we studied in details the different components of the transformer
architecture, as discussed in the next section.

D5.5_FVLLMONTI_P1-UBX-20221024 13

5. Further	network	optimisations	
I. MODEL WEIGHTS ANALYSIS

The layers of the transformer model are organized into four groups: Convolution (CONV) layers, Multi-Head
Attention (MHA) layers, Feed Forward (FF) layers, and the remaining layers.

1. Number of parameters
The proportion in number of weights of each group is calculated and then plotted on Figure 3.

Figure 3: The proportion of weights of convolution layers (Conv), multi-head attention layers (MHA), feedforward layers (FF) and

remaining layers (Rest) for the Libri-trans, Ester, and Voxforge models.

In all the models, the parameters of the feedforward layers are the most numerous exceeding 55% of the
total number of parameters, those of the attention layers are above 22%, those of the convolution layers are
lower than 3% and the rest of the layers represent less than 5%.

2. Weight distribution (encoder layers)
Weight pruning sets low-value weights to zero. Here we examine the weight values across the transformer
encoder layers. The absolute values of the weights are averaged for each layer class, i.e., the convolution
layers (𝑐𝑣0 and 𝑐𝑣1), the feedforward layers 𝐹𝐹1 and 𝐹𝐹2, and the multi-head attention layers 𝑊!, 𝑊", 𝑊5,
and 𝑊0 and plotted on Figure 4, Figure 5 and Figure 6.

D5.5_FVLLMONTI_P1-UBX-20221024 14

Figure 4: Class weight distribution across the encoder blocks for Libritrans

Figure 5: Class weight distribution across the encoder blocks for Ester

D5.5_FVLLMONTI_P1-UBX-20221024 15

Figure 6: Class weight distribution across the encoder blocks for VoxForge

Briefly, we can make a few global observations, regardless of the model:
- The mean weights of 𝐹𝐹1 and 𝐹𝐹2 layers are close and their evolution is similar: the deeper the layer

is, the more important the weights are.
- The same observation can be made for 𝑊" and 𝑊!, but this time the mean magnitude of their

weights decrease with the depth of the block, except for Voxforge.
- Similarly, 𝑊5 and 𝑊0 are also very close and increasing with the depth of the blocks.

The observations made in the previous section shed the light on the fact that the most important layers in
terms on number of weights are the feed-forward (FF) layers. We have also seen that the mean weights of
these layers increase with the depth of the network. This suggests that the early feedforward layers of
encoder and decoder are less important than the deeper layers.

We thus propose in the next section an original pruning method based on this observation.

II. FEEDFORWARD LAYERS ADAPTIVE PRUNING

1. Method
We define “Variable scale pruning” as a pruning approach where the early feedforward layers are pruned
more than the deeper layers, proposing an arithmetically decreasing pruning rate. Let the two sequences of
parameter , and of parameter represent respectively the pruning rates of the encoder and decoder layers.
For two successive layers and , if is the pruning rate of the current encoder layer and is the pruning
rate of next layer so:

𝑈:;$ = 𝑈: − 𝛼
Similarly, for the decoder layers:
𝑉:;$ = 𝑉: − 𝛽
where 𝛼 and 𝛽are positive numbers.

For the first layers of the encoder and decoder, the initial pruning rates 𝑈0 and 𝑉0 are set empirically.

D5.5_FVLLMONTI_P1-UBX-20221024 16

2. Experiments and results
In this section, experiments are performed with the Libri-trans and Voxforge datasets, using the development
set to fix the adaptive pruning parameters and the test data for evaluation.

Baseline systems
We first carry out global and local pruning experiments on all layers for comparison purposes. Graphical
results from those experiments are shown on Figure 7 and Figure 8. When the pruning rate is less than 30%,
the error rate increases only slightly (about 4.7% relative for Libri-trans and 2.1% for Voxforge).

Figure 7: Error rate as a function of global and local pruning rate for Libritrans

D5.5_FVLLMONTI_P1-UBX-20221024 17

Figure 8: Error rate as a function of global and local pruning rate for VoxForge

Adaptative pruning

Adaptive pruning is applied in one shot on the trained models. The encoder and decoder pruning rates are
represented by the arithmetic sequences 𝑈 and 𝑉. To fix the initial pruning amounts 𝑈0 and 𝑉0 and the
differences 𝛼 and 𝛽, adaptive pruning is applied to the development data as follows:

1) fix 𝛼 and 𝛽
2) for each pair (𝑈0, 𝑉0):

a. use the formulas for 𝑈:;$ and 𝑉:;$ to prune the feedforward layers
b. decode the system using the pruned model and the development dataset
c. note the error rate and the sparsity

The algorithm is executed, on each dataset, three times using different pruning rates of the attention layers.
For Libri-trans, the pruning rates are 30%, 35%, and 40%. As for Voxforge, they are 35%, 40% and 45%. The
coefficients 𝛼 and 𝛽 are chosen empirically and set to 0.01. For example, for a starting pruning rate at 30%
and 𝛼 = 0.01, the first layer will be pruned with the coefficient 𝑈0 = 0.3, the second with 𝑈$ = 𝑈0 − 𝛼 =
0.3 − 0.01 = 0.29. Thus for a 12 block encoder, the pruning rate of the last layer will be 𝑈$' = 0.19 i.e. with
a pruning rate of 19%.

The Libri-trans models adaptive pruning results when setting the attention layer pruning to 40%, and the
parameters 𝛼 and 𝛽 to 0.01 are shown on

Table 6. The best tradeoffs between WER and sparsity (which are highlighted in bold) are selected.

D5.5_FVLLMONTI_P1-UBX-20221024 18

 U0(%)

 V0(%) 35 40 45 50 55 60 65

WER 35 6.8 6.8 6.9 7.1 7.4 8.0 8.6
Sparsity 32.87 35.37 37.87 40.37 42.87 45.37 47.87
WER 40 6.8 6.9 7.0 7.1 7.5 7.9 8.8
Sparsity 34.12 36.62 39.12 41.62 44.12 46.62 49.12
WER 45 6.8 7.0 7.0 7.2 7.5 8.0 8.9
Sparsity 35.37 37.87 40.37 42.87 45.37 47.87 50.37
WER 50 6.9 6.9 7.2 7.4 7.6 8.0 8.9
Sparsity 36.62 39.12 41.62 44.12 46.62 49.12 51.62
WER 55 7.0 7.0 7.2 7.5 7.8 8.4 9.0
Sparsity 37.87 40.37 42.87 45.37 47.37 50.37 52.87
WER 60 6.9 7.1 7.4 7.6 7.9 8.4 9.3
Sparsity 39.12 41.62 44.12 46.62 49.12 51.12 54.12
WER 65 7.1 7.3 7.4 7.8 8.1 8.9 9.5
Sparsity 40.37 42.87 45.37 47.87 50.37 52.87 55.37

Table 6: Adaptive pruning of the Libri-trans model: WER and Sparsity for several pairs of (𝑼𝟎, 𝑽𝟎) The fixed parameters are:
attention layer pruning rate = 40% and 𝜶 = 𝜷 = 𝟎. 𝟎𝟏.

Global and local pruning is performed using selected sparsities. The results on development sets of the
different pruning (global, local and adaptive pruning with three pruning rates of the attention layers) are
shown on Figure 9. For both Libri-trans and Voxforge, adaptive pruning outperforms local and global pruning.
This is expected since the variable scale pruning parameters are estimated on the development data.

D5.5_FVLLMONTI_P1-UBX-20221024 19

Figure 9: Development error rate as a function of sparsity for the two ASR systems Libri-trans (top) and Voxforge (bottom) after

applying local, global and variable scale pruning.

Evaluation

The three types of local, global, and variable scale pruning are applied on the test data without parameter
settings. 𝑈0, 𝑉0 and 𝛼 and 𝛽 keep the same values that are set on the development data. Figure 10 reports
all error rates for a sparsity up to 52.5% for Libri-trans and 62.5% for Voxforge. In fact, beyond that the error
rate resulting from the application of the global pruning increases greatly exceeding 24% for Libri-trans and
13.9% for Voxforge.

D5.5_FVLLMONTI_P1-UBX-20221024 20

Variable scale pruning outperforms global and local pruning in all cases. For Libri-trans, when we fix the target
WER at7.3%, the variable scale pruning provides a gain in sparsity of 7%. The model can be further
compressed to 52.5% with a relative WER increase of about 13.5% (final WER= 8.9%).
Regarding Voxforge, for a target CER at 9.5%, the variable scale pruning models are 6% sparser than the
models that are locally or globally pruned. Allowing a 7% relative increase in error rate, the model can be
further compressed to 57%.

Figure 10: Test error rate as a function of sparsity for the two ASR systems Libri-trans (top) and Voxforge (bottom) after applying
local, global and variable scale pruning

D5.5_FVLLMONTI_P1-UBX-20221024 21

6. CONCLUSION	

This deliverable describes the first version of an optimised architecture for speech recognition that takes into
consideration hardware limitations. First experiments were carried out on several speech datasets from
different languages, showing that the memory footprint of Transformer Speech Recognition systems can be
reduced by up to 84% with an acceptable loss of accuracy using pruning and quantization techniques.

After studying the transformer architecture, we proposed a new pruning method, “variable scale pruning”.
It is based on an analysis of the progression of feedforward layer weights through the encoder and decoder
blocks. Since deep layers have more important weights than early layers, variable scale pruning assigns a
variable pruning rate that decreases with the layer depth. Evaluation on different databases shows that this
method outperforms conventional local and global pruning methods and that the pruned model can be
compressed up to 57% with a slight decrease in accuracy.

Future work includes exploring variable scale pruning on attention head layers and fine tuning of models. We
are currently investigating the usage of similar techniques for our text-to-text translation systems and we will
then address the size reduction of the cascade model (speech-to-text transcription followed by text-to-text
translation).

7. REFERENCES	
[1] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘Quantized neural networks: training
neural networks with low precision weights and activations’, J. Mach. Learn. Res., vol. 18, no. 1, pp. 6869–
6898, Jan. 2017.

[2] Y. LeCun, J. Denker, and S. Solla, ‘Optimal Brain Damage’, in Advances in Neural Information
Processing Systems, 1989, vol. 2 [Online]. Available: https://proceedings.neurips.cc/paper/1989/hash/
6c9882bbac1c7093bd25041881277658-Abstract.html. [Accessed: Sep. 30, 2022]

[3] H.-G. Kim et al., ‘Knowledge Distillation Using Output Errors for Self-attention End-to-end Models’,
in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, p.
6185, doi: 10.1109/ICASSP.2019.8682775.

[4] M. Ben Noach and Y. Goldberg, ‘Compressing Pre-trained Language Models by Matrix
Decomposition’, in Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on Natural Language Processing,
Suzhou, China, Dec. 2020, pp. 884–889 [Online]. Available: https://aclanthology.org/2020.aacl-main.88.
[Accessed: Sep. 30, 2022]

[5] P. Ganesh et al., ‘Compressing Large-Scale Transformer-Based Models: A Case Study on BERT’,
Transactions of the Association for Computational Linguistics, vol. 9, pp. 1061–1080, 2021, doi:
10.1162/tacl_a_00413.

[6] P. Michel, O. Levy, and G. Neubig, ‘Are Sixteen Heads Really Better than One?’, in Advances in Neural
Information Processing Systems, 2019, vol. 32 [Online]. Available: https://papers.nips.cc/paper/2019/hash/
2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html. [Accessed: Oct. 24, 2022]

[7] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, ‘Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be pruned’, in Proceedings of the 57th annual meeting of

D5.5_FVLLMONTI_P1-UBX-20221024 22

the association for computational linguistics, Florence, Italy, Jul. 2019, pp. 5797–5808, doi: 10.18653/v1/P19-
1580 [Online]. Available: https://aclanthology.org/P19-1580

[8] A. Vaswani et al., ‘Attention is All you Need’, Advances in Neural Information Processing Systems, vol.
30, pp. 5998–6008, 2017.

[9] A. Bie, B. Venkitesh, J. Monteiro, M. A. Haidar, and M. Rezagholizadeh, ‘A Simplified Fully Quantized
Transformer for End-to-end Speech Recognition’. arXiv, Nov. 08, 2019 [Online]. Available:
http://arxiv.org/abs/1911.03604. [Accessed: Sep. 30, 2022]

[10] S. Li, D. Raj, X. Lu, P. Shen, T. Kawahara, and H. Kawai, ‘Improving Transformer-Based Speech
Recognition Systems with Compressed Structure and Speech Attributes Augmentation’, in Interspeech 2019,
Sep. 2019, pp. 4400–4404, doi: 10.21437/Interspeech.2019-2112 [Online]. Available: https://www.isca-
speech.org/archive/interspeech_2019/li19u_interspeech.html. [Accessed: Sep. 30, 2022]

[11] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘Learning both weights and connections for efficient neural
networks’, in Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 1, Cambridge, MA, USA, Dec. 2015, pp. 1135–1143.

[12] S. Anwar, K. Hwang, and W. Sung, ‘Structured Pruning of Deep Convolutional Neural Networks’, J.
Emerg. Technol. Comput. Syst., vol. 13, no. 3, p. 32:1-32:18, Feb. 2017, doi: 10.1145/3005348.

[13] V. Sanh, T. Wolf, and A. Rush, ‘Movement Pruning: Adaptive Sparsity by Fine-Tuning’, in Advances in
Neural Information Processing Systems, 2020, vol. 33, pp. 20378–20389 [Online]. Available:
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html.
[Accessed: Oct. 24, 2022]

[14] S. Karita et al., ‘A Comparative Study on Transformer vs RNN in Speech Applications’, in 2019 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU), Dec. 2019, pp. 449–456, doi:
10.1109/ASRU46091.2019.9003750.

[15] L. Dong, S. Xu, and B. Xu, ‘Speech-transformer: A no-recurrence sequence-to-sequence model for
speech recognition’, in 2018 IEEE international conference on acoustics, speech and signal processing
(ICASSP), 2018, pp. 5884–5888, doi: 10.1109/ICASSP.2018.8462506.

[16] A. C. Kocabiyikoglu, L. Besacier, and O. Kraif, ‘Augmenting Librispeech with French Translations: A
Multimodal Corpus for Direct Speech Translation Evaluation’, in Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May 2018 [Online].
Available: https://aclanthology.org/L18-1001. [Accessed: Sep. 08, 2022]

[17] S. Galliano, G. Gravier, and L. Chaubard, ‘The ester 2 evaluation campaign for the rich transcription
of french radio broadcasts’, in In In: Proceddings of Interspeech, Brighton (United Kingdom, 2009.

[18] Voxforge.org, ‘VoxForge’. [Online]. Available: http://www.voxforge.org/

[19] S. Watanabe et al., ‘ESPNet: End-to-end speech processing toolkit’, in Proceedings of the Annual
Conference of the International Speech Communication Association, INTERSPEECH, 2018, vol. 2018-
September, pp. 2207–2211, doi: 10.21437/Interspeech.2018-1456 [Online]. Available:
https://waseda.pure.elsevier.com/en/publications/espnet-end-to-end-speech-processing-toolkit.
[Accessed: Jan. 29, 2021]

[20] D. Povey et al., ‘The kaldi speech recognition toolkit’, in IEEE 2011 workshop on automatic speech
recognition and understanding, Hilton Waikoloa Village, Big Island, Hawaii, US, Dec. 2011.

[21] L. Ben Letaifa and J.-L. Rouas, ‘Transformer Model Compression for End-to-End Speech Recognition
on Mobile Devices’, in EUSIPCO 2022, 2022.

