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DOCUMENT	ABSTRACT	
This document describes the first version of the co-optimization between hardware requirements and neural 
network transformer architecture for automatic speech recognition (ASR) and machine translation (MT).  
 
Task 5.3 focuses on size reduction of the NN configurations from T.5.1 by using constraints (e.g. NN and 
kernel size, weight values, types) and quantization (low bit precision for parameter storage enabling low bit 
hardware operations) based on different hardware configurations from T.5.2 (e.g. computing capabilities, 
predefined topologies, predefined weight values, Network Resilience). Trade-offs between NN accuracy and 
N2C2 resource usage will be explored. 

From T.5.1 we decided to use Transformer-based models, since they achieve state-of-the-art performance in 
various areas of machine learning, including automatic speech recognition. However, their cost in terms of 
computational power, memory or energy consumption can be exorbitant, hence the interest in compression 
techniques that take into account the hardware constraints. Transformer models are mostly composed of 
attention and feedforward components. We propose to reduce the size of the transformer model of our end-
to-end speech recognition system by decreasing the number and precision of linear layer parameters. 
Specifically, we investigate the impact of weight pruning and model quantization on system performance. 
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Experiments carried out on several speech recognition datasets for different languages show that the 
memory footprint of Transformer Speech Recognition systems can be reduced by up to 84% with an 
acceptable loss of accuracy using classical pruning and quantization techniques.  

After studying the transformer architecture, we proposed a new pruning method, “variable scale pruning” 
which assigns a decreasing pruning rate according to the depth of the layers. Evaluation on different 
databases shows that this method outperforms conventional local and global pruning methods and that the 
pruned model can be compressed up to 57% with a slight decrease in accuracy.  

We are currently investigating the usage of similar techniques for our text-to-text translation systems and 
we will then address the size reduction of the cascade model, composed by a speech-to-text transcription 
stage followed by a text-to-text translation stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 101016776.  
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1. Introduction	
 
Neural network compression methods include quantization [1], pruning [2], knowledge distillation [3], matrix 
decomposition [4] and parameter sharing [5]. Although most of these methods were originally proposed for 
convolutional neural networks,  all of them and  others such as the pruning of the attention heads [6], [7] are 
directly applicable to the transformer model. Compared to basic models such as convolutional or recurrent 
neural networks, a transformer model [8] has a relatively complex architecture composed of several parts 
such as embedding layers, self-attention layers and feedforward layers. Thus, the effect of compression 
methods can vary when applied to different parts of it [5].  
 
Research on transformer model compression in end-to-end speech recognition has mainly focused on 
quantization [9] and parameter sharing [10]. In this document we review the quantization method and two 
kinds of pruning schemes: local and global pruning. We then perform baseline experiments to assess the 
gains obtained using the two techniques and their combination.  
 
After studying in detail the transformer architecture, we proposed a new pruning method, “variable scale 
pruning”. This method allows to optimize the pruning rate according to the depth of the network which 
results in further gains in model size while preserving the accuracy. 

2. Compression	techniques	
Model compression methods reduce the inference costs of trained models. In particular, we consider two 
compression techniques: quantization and pruning.  

I. QUANTIZATION 
By default, most systems use float 32 types to represent variables and weights. Quantization replaces floating 
points with integers leading, to less memory consumption and faster calculations [1]. 

Quantization maps a floating point value 𝑥 in [𝑎, 𝑏] to a 𝑘 − 𝑏𝑖𝑡 integer 𝑥! in [−2"#$, 2"#$ − 1]. 

𝑥! = 𝑟𝑜𝑢𝑛𝑑 9
𝑥 − 𝑎
𝜕

; 

where 𝛿 = %#&
'!#$

 . In the case that 𝑥 in not in the range of [𝑎, 𝑏], the clamp operator is applied: 

𝑐𝑙𝑎𝑚𝑝(𝑥; 𝑎, 𝑏) = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥, 𝑎), 𝑏) 

The de-quantization function is defined as: 

𝐷E𝑥!F = 𝑥! ∗ 𝛿 + 𝑎 

Different quantization approaches have been proposed and can be classified into two categories: post-
training quantification and  quantification aware training [9]. Post-training quantization trains the model 
using weights and float32 inputs, then quantizes the weights. Its main advantage is that it is simple to apply. 
Quantization-aware training quantizes the weights during training. Here, even the gradients are calculated 
for the quantized weights. 

 

II. PRUNING 
Deep learning models are often over-parameterized [2], [11], with many insignificant weights that contribute 
only slightly to the inference of the model. These weights can be set to zero without significantly affecting 
performance [2], a technique typically referred to as pruning. The importance of the weights is often  
determined by their magnitude or their gradients [5]. 
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In general, there are two types of pruning: 

• unstructured pruning [11], which removes individual weights. Substituting the value of the weight 
with zero in a weight matrix is equivalent to pruning a connection. This pruning is also called sparse 
pruning because it results in sparse matrices. 

• structured pruning [12] focuses on pruning blocks of weights, for example, by deleting entire 
channels at a time. In practice, structured pruning sets an entire row or column of a weight matrix 
to zero, which is the same as deleting a neuron. 

Pruning can be incorporated into the training process as an additional step between training epochs (iterative 
pruning) [9], applied all at once after the model training is complete [7] (one-shot pruning), or applied 
between fine tuning steps [13]. Based on whether the pruning is applied globally to all model parameters or 
is calculated independently for each layer, this technique is called global pruning or local pruning. Global 
pruning groups all the parameters of the layers and selects a global fraction of them to prune. Local pruning 
removes a fixed percentage of parameters from each layer. 

3. Transformer	model	
 
I. MODEL DESCRIPTION 
 
The Automatic Speech Recognition (ASR) Transformer model [14] is a sequence-to-sequence model that 
maps an input sequence of acoustic features (𝑥$, 𝑥', … 𝑥() of length 𝑇 to an output sequence of characters 
(𝑦$, 𝑦', . . , 𝑦)) of length 𝐿. Its architecture can be divided into two parts namely the encoder and the decoder. 
The encoder converts the input sequence into an intermediate sequence of encoded features (ℎ$, ℎ', … , ℎ*) 
of length 𝑁. The decoder predicts a new character 𝑦+  based on the encoded features (ℎ$, ℎ', … , ℎ*) and the 
previous decoded characters (𝑦$, 𝑦', … , 𝑦+#$). Both the encoder and the decoder are composed of a stack of 
attention and feedforward network blocks. An overview of the transformer architecture is displayed on 
Figure 1. 

 
Figure 1: Overview of the transformer architecture (adapted from [8]) 
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Our ASR transformer follows the same architecture as [15]. The input acoustic features are subsampled using 
two convolution layers (CONV) before being fed into the encoder. Both the encoder and the decoder are 
composed of multi-head attention (MHA) and feedforward (FF) layers, each followed by a residual connection 
and normalization. A simplified representation of the transformer model is shown on Figure 2.  
 

 
Figure 2: Transformer main components 
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II. MODEL ARCHITECTURE 

 
The self-attention operation allows frames to gather context from all timesteps and build an informative 
sequence of high level  [15]. Specifically, the inputs of each layer are projected into queries 𝑄, keys 𝐾, and 
values 𝑉 with 𝑄 ∈ 𝑅,"∗.", 𝐾 ∈ 𝑅,!∗.!  and 𝑉 ∈ 𝑅,#∗.#. 𝑡 ∗ are the elements numbers in different inputs and 
𝑑 ∗ are the corresponding element dimensions. Scaled Dot-Product Attention [8] is then computed as:  
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 X
𝑄𝐾(

Y𝑑"
Z𝑉	

 
The multi-headed attention is obtained by performing this calculation ℎ times. ℎ is the number of heads. 
 
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑$, … , ℎ𝑒𝑎𝑑/)𝑊0 
where 
ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛E𝑄𝑊1

2 , 𝐾𝑊1
3 , 𝑉𝑊1

4F 
 
The projection matrices are 𝑊1

2 ∈ 𝑅.$%&'(∗.", 𝑊1
3 ∈ 𝑅.$%&'(∗.!, 𝑊1

4 ∈ 𝑅.$%&'(∗.#  and 𝑊0 ∈ 𝑅/∗.#∗.$%&'(. 
In this work, 𝑑" = 𝑑! = 𝑑5 = 𝑑67.8+/ℎ. 
 
The outputs of multi-head attention go through a 2-layer position-wise feedforward network (FFN) with 
hidden size 𝑑99. 
 
𝐹𝐹𝑁(𝑥) = 𝑊'𝑅𝑒𝐿𝑈(𝑊$𝑥 + 𝑏$) + 𝑏' 
 
𝑏$ ∈ 𝑅.))  and 𝑏' ∈ 𝑅.$%&'(  are the biases. The weight matrices are 𝑊$ ∈ 𝑅.$%&'(∗.))  and  
𝑊' ∈ 𝑅.))∗.$%&'(. 
 

4. Baseline	Models	&	Preliminary	Experiments	
 
We have developed transformer models for three languages including English, French and Italian using Libri-
trans [16], Ester [17], and Voxforge [18] databases respectively. 
 
 
I. DATA DESCRIPTION 
 
The Libri-trans, Ester and Voxforge corpora are produced within the framework of the Librivox project, the 
French national ESTER project and the Voxforge project. The Libri-trans and Voxforge recordings are 
extracted from audiobooks, and the Ester recordings are radio broadcasts news. Each dataset is divided into 
three parts: train, development (dev) and test as described in Table 1. The train data is used for model 
training. The dev and the test parts are dedicated to evaluation. 
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 Libritrans Ester Voxforge 
Train 230 231 18 
Dev 2 5.45 1 
Test 3.5 6.5 1 

Table 1: Duration (in hours) of the three datasets 

 
 
II. TRAINED MODELS  
 
Baseline ASR transformer models are developed and evaluated with the Espnet toolkit [19]. This toolkit 
involves Kaldi [20] tools for data processing and parameter extraction and  Pytorch1 modules for model 
estimation. 
First, by using three different speeds (0.9, 1.0, and 1.1) for speed perturbation data augmentation, the train 
dataset amount tripled. Then, 80 filter bank coefficients are extracted and normalized with respect to the 
mean and variance. Transcripts are represented by sub-word units, namely characters for the Ester and 
Voxforge systems and byte-pair coding subwords for the Libritrans system. Finally, several transformer 
architectures are evaluated.  

Table 2 shows the architecture of the best transformer models, their number of parameters (in millions) and 
the error rates of the ASR systems. We consider the word errors (WER) of the Libri-trans and Ester systems 
and the character errors (CER) of the Voxforge system. 

 
 Libritrans Ester Voxforge 
Architecture details    
   Enc/Dec 12/6 18/6 12/6 
   FF Dimension 1024 2048 2048 
   ATT Dimension 256 512 256 
   Heads 4 4 4 
# Parameters (Millions) 27.92 89.64 35.07 
Error rate (%) 6.6 14.1 9.1 

 

Table 2: ASR models specifications - Architecture: number of encoder and decoder blocks (Enc/Dec), dimension of hidden layers 
(FF Dimension) and attention layers (ATT Dimension) and number of attention heads (Heads) - Number of parameters (Millions) - 
Error rate (% WER/CER for VoxForge) 

 
III. RESULTS 
 
First, one-shot pruning is applied to the trained end-to-end ASR models for three different languages (French, 
English, Italian), applying either global or local pruning while varying the pruning rate. For the best trade-off 
between error and compression rates, we tolerate a relative increase in error rate of 10%. The best trade-
offs are achieved with pruning rates of 33% for Libri-trans (English), 37% for Ester (French), 55% for Voxforge 
(Italian). After applying gzip compression, the disk space occupied by the pruned models is about half of the 
space occupied by the initial models. Details are given in Table 3. 
 

 
1 www.pytorch.org 
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 LIBRITRANS ESTER VOXFORGE 
Initial model (MB) 99 318 124 
Pruned model (MB) 72 228 72 
RATIO (x - %) 1.3x - 72% 1.4x - 71% 1.7x - 58% 

Table 3 Size of initial gzip-compressed and pruned gzip-compressed models (in megabytes) and their ratio 

We then studied the effect of quantization. Indeed, initially all model parameters are stored and processed 
in real 32-bit format. An 8-bit integer quantization is performed on the encoder and decoder weight matrices. 
Activations are quantized on the fly during inference and stored as 32-bit real values. For all systems, the 
performance decrease is insignificant (less than 0.1%). Regarding the model size, we observe that quantized 
models are more than 70% smaller (Table 4). 
 
 

 LIBRITRANS ESTER VOXFORGE 
Initial model (MB) 99 318 124 
Quant. model (MB) 23  72 29 
RATIO (x - %) 4.3x - 23% 4.4x - 22% 5.3x - 23% 

Table 4 Size of gzip-compressed quantized models (in megabytes) and their ratio to the initial gzip-compressed models 

Pruning and quantization are finally applied successively for a better accuracy/size trade-off. This is 
performed in three steps: 
1) set the pruning rate 
2) prune the model 
3) quantize the model 
 
The initial and final models are then compressed using gzip and their size ratios are computed to assess the 
joint contribution of pruning and quantization. The results are given inTable 5. 
 

 LIBRITRANS ESTER VOXFORGE 
Initial model (MB) 99 318 124 
Pruned + Quant. 
model (MB) 

20  68 20 

RATIO (x - %) 4.9x - 20% 4.6x - 21% 6.2x - 16% 
Initial error (%) 6.6 14.1 9.1 
Pruned+Quant 
error(%) 

7.2 15.6 10.1 

Table 5 Initial and final error rates, size of initial gzip-compressed and pruned+quantized gzip-compressed models (in megabytes) 
and their ratio   

A final compression of about 82% for Voxforge (Italian), 80% for Libri-trans (English) and 79% for Ester 
(French) is achieved. Experiments carried out on several speech datasets from different languages show that 
the memory footprint of Transformer Speech Recognition systems can be reduced by up to 82% with an 
acceptable loss of accuracy using pruning and quantization techniques. These results are published in an 
international conference paper [21]. 
 
To further optimize the networks, we studied in details the different components of the transformer 
architecture, as discussed in the next section. 
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5. Further	network	optimisations	
I. MODEL WEIGHTS ANALYSIS 
 
The layers of the transformer model are organized into four groups: Convolution (CONV) layers, Multi-Head 
Attention (MHA) layers, Feed Forward (FF) layers, and the remaining layers.  
 

1. Number of parameters 
The proportion in number of weights of each group is calculated and then plotted on Figure 3. 

 
Figure 3: The proportion of weights of convolution layers (Conv), multi-head attention layers (MHA), feedforward layers (FF) and 

remaining layers (Rest) for the Libri-trans, Ester, and Voxforge models. 

In all the models, the parameters of the feedforward layers are the most numerous exceeding 55% of the 
total number of parameters, those of the attention layers are above 22%, those of the convolution layers are 
lower than 3% and the rest of the layers represent less than 5%. 
 

2. Weight distribution (encoder layers) 
Weight pruning sets low-value weights to zero. Here we examine the weight values across the transformer 
encoder layers. The absolute values of the weights are averaged for each layer class, i.e., the convolution 
layers (𝑐𝑣0 and 𝑐𝑣1), the feedforward layers 𝐹𝐹1 and 𝐹𝐹2, and the multi-head attention layers 𝑊!, 𝑊", 𝑊5, 
and 𝑊0 and plotted on Figure 4, Figure 5 and Figure 6. 
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Figure 4: Class weight distribution across the encoder blocks for Libritrans 

 
Figure 5: Class weight distribution across the encoder blocks for Ester 
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Figure 6: Class weight distribution across the encoder blocks for VoxForge 

Briefly, we can make a few global observations, regardless of the model: 
- The mean weights of 𝐹𝐹1 and 𝐹𝐹2 layers are close and their evolution is similar: the deeper the layer 

is, the more important the weights are. 
- The same observation can be made for 𝑊" and 𝑊!, but this time the mean magnitude of their 

weights decrease with the depth of the block, except for Voxforge. 
- Similarly, 𝑊5 and 𝑊0 are also very close and increasing with the depth of the blocks. 

The observations made in the previous section shed the light on the fact that the most important layers in 
terms on number of weights are the feed-forward (FF) layers. We have also seen that the mean weights of 
these layers increase with the depth of the network. This suggests that the early feedforward layers of 
encoder and decoder are less important than the deeper layers. 
 
We thus propose in the next section an original pruning method based on this observation.  
 
II. FEEDFORWARD LAYERS ADAPTIVE PRUNING 
 

1. Method 
We define “Variable scale pruning” as a pruning approach where the early feedforward layers are pruned 
more than the deeper layers, proposing an arithmetically decreasing pruning rate. Let the two sequences  of 
parameter , and  of parameter  represent respectively the pruning rates of the encoder and decoder layers. 
For two successive layers  and , if  is the pruning rate of the current encoder layer and  is the pruning 
rate of next layer so: 

𝑈:;$ = 𝑈: − 𝛼 
Similarly, for the decoder layers: 
𝑉:;$ = 𝑉: − 𝛽 
where 𝛼 and 𝛽are positive numbers. 
 
For the first layers of the encoder and decoder, the initial pruning rates 𝑈0 and 𝑉0 are set empirically. 
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2. Experiments and results 
In this section, experiments are performed with the Libri-trans and Voxforge datasets, using the development 
set to fix the adaptive pruning parameters and the test data for evaluation. 
 

Baseline systems 
We first carry out global and local pruning experiments on all layers for comparison purposes. Graphical 
results from those experiments are shown on Figure 7 and Figure 8. When the pruning rate is less than 30%, 
the error rate increases only slightly (about 4.7% relative for Libri-trans and 2.1% for Voxforge). 

 
Figure 7: Error rate as a function of global and local pruning rate for Libritrans 
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Figure 8: Error rate as a function of global and local pruning rate for VoxForge 

 

Adaptative pruning 
 
Adaptive pruning is applied in one shot on the trained models. The encoder and decoder pruning rates are 
represented by the arithmetic sequences 𝑈 and 𝑉. To fix the initial pruning amounts 𝑈0 and 𝑉0 and the 
differences 𝛼 and 𝛽, adaptive pruning is applied to the development data as follows: 
 

1) fix 𝛼 and 𝛽 
2) for each pair (𝑈0, 𝑉0): 

a. use the formulas for 𝑈:;$ and 𝑉:;$ to prune the feedforward layers 
b. decode the system using the pruned model and the development dataset 
c. note the error rate and the sparsity 

 
The algorithm is executed, on each dataset, three times using different pruning rates of the attention layers. 
For Libri-trans, the pruning rates are 30%, 35%, and 40%. As for Voxforge, they are 35%, 40% and 45%. The 
coefficients 𝛼 and 𝛽 are chosen empirically and set to 0.01. For example, for a starting pruning rate at 30% 
and 𝛼 = 0.01, the first layer will be pruned with the coefficient 𝑈0 = 0.3, the second with 𝑈$ = 𝑈0 − 𝛼 =
0.3 − 0.01 = 0.29. Thus for a 12 block encoder, the pruning rate of the last layer will be 𝑈$' = 0.19 i.e. with 
a pruning rate of 19%. 
 
The Libri-trans models adaptive pruning results when setting the attention layer pruning to 40%, and the 
parameters 𝛼 and 𝛽 to 0.01 are shown on  

Table 6. The best tradeoffs between WER and sparsity (which are highlighted in bold) are selected. 
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  U0(%) 

 V0(%) 35 40 45 50 55 60 65 

WER 35 6.8 6.8 6.9 7.1 7.4 8.0 8.6 
Sparsity  32.87 35.37 37.87 40.37 42.87 45.37 47.87 
WER 40 6.8 6.9 7.0 7.1 7.5 7.9 8.8 
Sparsity  34.12 36.62 39.12 41.62 44.12 46.62 49.12 
WER 45 6.8 7.0 7.0 7.2 7.5 8.0 8.9 
Sparsity  35.37 37.87 40.37 42.87 45.37 47.87 50.37 
WER 50 6.9 6.9 7.2 7.4 7.6 8.0 8.9 
Sparsity  36.62 39.12 41.62 44.12 46.62 49.12 51.62 
WER 55 7.0 7.0 7.2 7.5 7.8 8.4 9.0 
Sparsity  37.87 40.37 42.87 45.37 47.37 50.37 52.87 
WER 60 6.9 7.1 7.4 7.6 7.9 8.4 9.3 
Sparsity  39.12 41.62 44.12 46.62 49.12 51.12 54.12 
WER 65 7.1 7.3 7.4 7.8 8.1 8.9 9.5 
Sparsity  40.37 42.87 45.37 47.87 50.37 52.87 55.37 

 

Table 6: Adaptive pruning of the Libri-trans model: WER and Sparsity for several pairs of (𝑼𝟎, 𝑽𝟎) The fixed parameters are: 
attention layer pruning rate = 40% and 𝜶 = 𝜷 = 𝟎. 𝟎𝟏. 

 
 
 
Global and local pruning is performed using selected sparsities. The results on development sets of the 
different pruning (global, local and adaptive pruning with three pruning rates of the attention layers) are 
shown on Figure 9. For both Libri-trans and Voxforge, adaptive pruning outperforms local and global pruning. 
This is expected since the variable scale pruning parameters are estimated on the development data. 
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Figure 9: Development error rate as a function of sparsity for the two ASR systems Libri-trans (top) and Voxforge (bottom) after 

applying local, global and variable scale pruning. 

Evaluation  
 
The three types of local, global, and variable scale pruning are applied on the test data without parameter 
settings. 𝑈0, 𝑉0 and 𝛼 and 𝛽 keep the same values that are set on the development data. Figure 10 reports 
all error rates for a sparsity up to 52.5% for Libri-trans and 62.5% for Voxforge. In fact, beyond that the error 
rate resulting from the application of the global pruning increases greatly exceeding 24% for Libri-trans and 
13.9% for Voxforge. 
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Variable scale pruning outperforms global and local pruning in all cases. For Libri-trans, when we fix the target 
WER at7.3%, the variable scale pruning provides a gain in sparsity of 7%. The model can be further 
compressed to 52.5% with a relative WER increase of about 13.5% (final WER= 8.9%). 
Regarding Voxforge, for a target CER at 9.5%, the variable scale pruning models are 6% sparser than the 
models that are locally or globally pruned. Allowing a 7% relative increase in error rate, the model can be 
further compressed to 57%. 

 

 
Figure 10: Test error rate as a function of sparsity for the two ASR systems Libri-trans (top) and Voxforge (bottom) after applying 
local, global and variable scale pruning 

 
 
 
 
 



                                                                          
 

D5.5_FVLLMONTI_P1-UBX-20221024 21 

 
 

6. CONCLUSION	

This deliverable describes the first version of an optimised architecture for speech recognition that takes into 
consideration hardware limitations. First experiments were carried out on several speech datasets from 
different languages, showing that the memory footprint of Transformer Speech Recognition systems can be 
reduced by up to 84% with an acceptable loss of accuracy using pruning and quantization techniques.  

After studying the transformer architecture, we proposed a new pruning method, “variable scale pruning”. 
It is based on an analysis of the progression of feedforward layer weights through the encoder and decoder 
blocks. Since deep layers have more important weights than early layers, variable scale pruning assigns a 
variable pruning rate that decreases with the layer depth. Evaluation on different databases shows that this 
method outperforms conventional local and global pruning methods and that the pruned model can be 
compressed up to 57% with a slight decrease in accuracy.  

Future work includes exploring variable scale pruning on attention head layers and fine tuning of models. We 
are currently investigating the usage of similar techniques for our text-to-text translation systems and we will 
then address the size reduction of the cascade model (speech-to-text transcription followed by text-to-text 
translation). 
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