
 
 
 
 

 

  

Funded by the European Union. Views and opinions expressed are however those of the 
author(s) only and do not necessarily reflect those of the European Union or the European 
Commission. Neither the European Union nor the granting authority can be held responsible 
for them. 

 

 

 

 

  

Deliverable 6.1 

Metrics Definition 

 

Start date of the project: 1st January 2023 

Duration 48 months 

 

 

 

 

Ref. Ares(2024)2362363 - 30/03/2024



 

D6.1 Metrics – Public 2 

 

 Document Classification 

Document Title D6.1 Metrics Definition 

Author(s) 

P04 – POLITO – Roberta Bardini, Stefano Di Carlo, 
Alfredo Benso, Paolo Prinetto, and Alessandro 
Savino 

P09 – NKUA – George Papadimitriou, Dimitris 
Gizopoulos 

P05 – INESC-ID – Luis Guerra y Silva 

P12 – UNIVR – Mariano Ceccato, Alberto Lovato, 
Niccolò Marastoni 

P1.1 – ECL – Alberto Bosio 

P15 – TUB – Jean-Pierre Seifert, Ulrich Ruhrmair 

P1 – CNRS – Fabio Pavanello 

Work Package WP6 – Benchmarking of the secure low-power 
system 

Dissemination Level PU = Public 

Nature R = report 

Doc ID Code 24_03_29_NEUROPULS_D6.1.doc 

Keywords Metrics, computing architectures, physical 
unclonable functions, simulation 

 

  Document History 

2023-08-03 Table of contents and 
structure defined P4 POLITO – A. Savino 

2024-02-28 First draft All contributors 



 

D6.1 Metrics – Public           3 

 

  Document History 

2024-03-29 Finalized All contributors 

 

 Document Validation 

Project Coordinator Fabio Pavanello 

Date 2024-03-29 

 

This document contains information that is proprietary to the NEUROPULS consortium. 
The document or the content of it shall not be communicated by any means to any third 
party except with prior written approval of the NEUROPULS consortium.  



 

D6.1 Metrics – Public           4 

 

Document Abstract 
This report aims to comprehensively examine metrics for evaluating the NEUROPULS 
Horizon Europe project (Grant Agreement n° 101070238) accelerator and their simulation 
counterparts and the security of the phase-change material PUFs provide. The report 
provides an in-depth analysis of the key performance indicators, methodologies, and 
tools utilized in assessing the efficiency and efficacy of the revolutionary computing 
platforms proposed in the project. By defining a standardized set of metrics and 
evaluation practices, this document aims to foster cross-comparisons, facilitate 
advancements, and guide researchers, developers, and industry stakeholders in 
harnessing the true capabilities of neuromorphic computing. 

This deliverable explores the challenges of benchmarking photonic chips, considering 
speed, power efficiency, and scalability factors. Additionally, we emphasize the 
importance of establishing a robust framework for comparing simulation results with 
physical implementations, enabling researchers and engineers to gain meaningful 
insights into the capabilities and limitations of these cutting-edge technologies. 

Through thoroughly examining established evaluation metrics and emerging standards, 
this document aims to provide a comprehensive guide for researchers, developers, and 
industry professionals engaged in evaluating and benchmarking photonic chips and 
their simulation models. By addressing the unique challenges and opportunities in this 
field, we strive to contribute to the ongoing dialogue surrounding the advancement of 
photonic computing and foster a standardized approach to benchmarking that ensures 
meaningful and reliable assessments. 
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1. Introduction 
Developing advanced hardware accelerators and supporting software tool ecosystems 
presents many challenges and opportunities in the dynamic and evolving landscape of 
neuromorphic computing. As part of our ongoing efforts in this domain, the 
NEUROPULS team has dedicated substantial resources towards defining 
comprehensive metrics that holistically evaluate the quality and performance of 
neuromorphic chips and the encompassing tool ecosystem. 

1.1 Objectives 
This deliverable outlines a set of metrics designed to gauge various aspects of the work, 
ensuring that our advancements not only meet but exceed the current standards of 
neuromorphic technology. 

The essence of our initiative is to establish a robust framework for evaluation that spans 
across multiple dimensions of our project: 

• Chip-Related Metrics: Recognizing the critical importance of hardware efficiency, 
we have developed metrics to assess the neuromorphic accelerator's 
performance, mainly focusing on its bandwidth, latency, and power consumption. 
These metrics are pivotal in understanding the chip's operational efficiency and 
potential impact on broader system performance. 

• Simulation-Related Metrics: With an eye toward the future, our team has also 
focused on metrics that validate the functional likelihood of our models. These 
metrics are instrumental in assessing the scalability of our simulations, especially 
in the context of next-generation hardware that may present sizes and 
complexities not currently available. This foresight allows us to anticipate and 
address potential challenges in hardware evolution, ensuring our models remain 
relevant and adaptable. 

• Security-Related Metrics: In an era where digital security is of paramount 
importance, securing architectures is essential. Our security-related metrics are 
designed to evaluate the integrity and robustness of the security features 
provided by Physical Unclonable Functions (PUFs) and the overall secure 
architecture of our envisioned system. These metrics offer a quantitative measure 
of security performance, essential for building trust and reliability in 
neuromorphic computing systems. 

Integral to our evaluation framework is the inclusion of reference counterparts for all 
performance metrics. This addition is designed to facilitate future benchmarking efforts, 
providing a quantitative perspective that enhances the comparability and 
competitiveness of our neuromorphic solutions. Establishing these benchmarks lays the 
groundwork for continuous improvement and innovation in the field. 

1.2 Scope and Limitations 
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Our evaluation metrics aim to contribute to the field's advancement, setting new 
benchmarks for quality and performance in neuromorphic chips and tool ecosystems. 

The current set of metrics proposed in this document will be updated and refined 
iteratively along with project activities to evaluate performance in a meaningful way with 
a close link to our use-cases.  

 

1.3 Organization of the Deliverable 
The deliverable is composed of three parts: 

1. Section 0 serves as a pivotal resource for evaluating the performance and energy 
consumption of the Neuromorphic Chip by means of well-defined metrics. 
Through meticulous analysis of these metrics, stakeholders can gain deeper 
insights into the chip's functionalities, enabling informed decision-making 
regarding its utilization in various applications. 

2. Section 3 focuses on the thorough assessment of the simulation tool. The primary 
objective is to facilitate an effective comparison between the simulated models 
and their physical counterparts. Additionally, the section emphasizes 
benchmarking the scalability of the simulation tool, particularly in scenarios that 
need rapid prototyping and design exploration. By elucidating the tool's 
scalability and fidelity in modeling real-world scenarios, stakeholders can 
ascertain its suitability for diverse applications and expedite the development 
process. 

3. Section 4 investigates the metrics for evaluating the quality of the Physical 
Unclonable Function (PUF) architectures developed in NEUROPULS. PUFs play a 
pivotal role in enhancing the security of hardware systems by leveraging unique 
physical characteristics for authentication purposes. Through rigorous analysis of 
various metrics, including reliability, uniqueness, and robustness, the section aims 
to provide valuable insights into the efficacy and performance of such 
architectures. By exploiting these metrics, stakeholders can make informed 
decisions regarding the deployment and integration of PUF-based security 
measures in their hardware systems, thereby fortifying their resilience against 
unauthorized access and cybersecurity threats.  
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2. Evaluating Neuromorphic Chip 
Accelerators 

2.1 Performance Metrics 
The architecture of the NEUROPULS final prototype is depicted in Figure 1. It is divided 
into two main components: (i) the host microcontroller (FPGA Board) and (ii) the 
Photonic Integrated Circuit (PIC).  

 
Figure 1: Neuromorphic Chip Preliminary Accelerator architecture. Figure does not include 

for simplicity the laser and its DC supply. 

The host RISC-V microcontroller deploys specific computational kernels defined as 
Inference Operations (IOs) to the photonic circuit. The IO deployment requires a 
controller (CTRL) responsible for fetching the data from memory (MEM), sending them 
to the PIC, using the DAC to convert digital to analog electrical signals, and then 
leveraging the ADC to convert back the analog to digital electrical signals corresponding 
to the IOs outputs. In the ASIC board, specific components are responsible for the 
encoding of the electrical signal on the light carrier (MODULATORS) and for the 
detection of the optical signals and their optical-to-electrical conversion 
(PHOTODETECTORS) as well as transimpedance amplifiers (TIA) for the conversion from 
current to voltage to provide suitable signals to the ADC.  
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2.1.1 Latency 

In this context, we define Latency as the time (in seconds) required to execute a given 
operation. Depending on the granularity, we can list the following metrics: 

• System-Level: the latency is the time required to run the whole application. This 
metric includes all the hardware components involved during the computation. 

• RISC-V level: the latency is the time required to run a set of IOs on the photonic 
circuit. This metric includes the CTRL, DMA, DAC, ADC, POWER DRIVERS, 
MODULATORS, and PHOTODETECTORS components involved in the 
computation. 

• CTRL level: the latency is the time required to fetch data from memory, convert 
them from digital to analog (DAC), then encode the analog electrical signals onto 
the optical carrier (MODULATORS), and detect the optical signals and convert 
back to digital the results (PHOTODETECTORS followed by TIA and ADC) of a 
single inference. 

• ASIC-level: the latency is the time required to encode the signals from the 
electrical domain (at the entrance of the power drivers) onto the optical carrier 
and at the output of the TIAs after being detected and converted into the 
electrical domain. 

• PIC-level: the latency is the time required for the signals at the entrance of the 
MODULATORS to be detected and converted in electrical signals at the output of 
the PHOTODETECTORS. 

Concerning the instruments used to measure the latency at the above levels, we plan to 
add specific components at the FPGA, ASIC and PIC to measure the five latency levels. 
In case of problems, we can still resort to indirect measures. For example, we can 
subtract the ADC/DAC times from the CTRL-level latency to obtain a good 
approximation of the latency at the ASIC level. 

2.1.2 Memory Utilization and Data Transfer 
Efficiency 

When evaluating the data transfer in a system that connects an FPGA-based 
microprocessor with external accelerators, it is essential to consider several key metrics 
to assess the efficiency and the performance of the data exchange. Data transfer is 
involved at the RISC-V level and the CTRL level. The data transfer rate will have the 
following definition: 

• Throughput (or bandwidth): Measure the amount of data transferred per unit of 
time (in seconds). This metric indicates the system's efficiency in moving data 
between the microprocessor and external accelerators. 

While this metric can support an efficient measurement of the compatibility between 
the photonic part and the electrical counterpart, memory utilization challenges 
benchmarking as it will link with the CTRL-level management. For this reason, we expect 
to investigate the memory utilization by providing the following metric: 
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• Buffering and Flow Control Overhead: Examine the effectiveness of buffering 
and flow control mechanisms in managing data flow between the 
microprocessor and accelerators. It is the time between storing the output from 
the photonic accelerator in the shared memory and the time the RISC-V 
microprocessor can access it.  

This is crucial for preventing bottlenecks and optimizing overall system performance. 

2.1.3 Reliability 

Reliability is the probability that the system properly works (i.e., it provides correct 
outputs) at a given time [1]. In our context, we will consider the inference accuracy loss 
induced by the presence of hardware faults as impact on reliability. The considered 
hardware faults are transient faults induced by external perturbation. Such faults can 
affect the electronic components and are mainly modeled as single-bit flips in memory 
cells (i.e., main memory, registers, single flip-flops) [1]. 

Since faults in the physical systems can only be simulated [2], the expectation is to carry 
out light fault injection campaigns based on the benchmarking applications, where an 
extra software layer modifies the input data to introduce soft errors on a single event-
based methodology. The intricate nature of cutting-edge devices renders exhaustive 
Fault Injection (FI) campaigns practically unfeasible, often exceeding computational 
capabilities. A viable approach involves adopting statistical FI campaigns, allowing a 
reduction in the requisite number of experiments by selectively injecting a small, 
carefully chosen portion. Under specific conditions, statistical FIs ensure a precise 
understanding of the issue, albeit with a diminished sample size. Presently, challenges 
revolve around determining the optimal sample size, fault locations, and accurate 
interpretation of statistical assumptions [3]. For all those reasons, the injection of the 
faults will follow two primary objectives: firstly, to apply the correct specification of 
statistical FIs for Neural Networks (NNs), and secondly, to resort to a data analysis 
methodology that significantly diminishes the number of FIs required for achieving 
statistically meaningful results, all while upholding the integrity of the proposed 
approach [3]. Those results will be able to highlight the actual accuracy loss, i.e., only 
when the expected output-based decision deviates from the expected one. 

2.2 Power Efficiency and Energy 
Consumption 

As for the latency, the power and energy consumption will be defined at different 
granularity. 

• System-Level: the power consumed [Watts] to run the whole application. The 
energy [Joule] is the power times the latency at this level. This metric includes all 
the hardware components involved during the computation. 

• RISC-V level: the power consumed [Watts] to run a set of IOs on the photonic 
circuit. The energy [Joule] is the power times the latency at this level. This metric 
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includes the CTRL, DMA, DAC, ADC, POWER DRIVERS, MODULATORS, and 
PHOTODETECTORS components involved in the computation. 

• CTRL level: the power consumed [Watts] to fetch data from memory, convert 
them from digital to analog (DAC), then encode them onto the optical carrier 
(MODULATORS), and detect the optical signals and convert back to digital the 
results (PHOTODETECTORS followed by TIA and ADC) of a single inference. The 
energy [Joule] is the power times the latency at this level. 

• ASIC-level: the power consumed [Watts] to encode the signals from the electrical 
domain (at the entrance of the power drivers) onto the optical carrier and at the 
output of the TIAs after being detected and converted into the electrical domain. 
The energy [Joule] is the power times the latency at this level. 

• PIC-level: the power consumed [Watts] for driving the MODULATORS and the 
PHOTODETECTORS. 

All the powers and related energy consumptions discussed above shall also include the 
laser power with its wall-plug efficiency. 

As for the latency, we plan to add specific components at the FPGA board and ASIC 
board levels to measure the different power and energy metrics. In case of problems, we 
can still resort to indirect measures. For example, from the CTRL-level power/energy, we 
can subtract the ADC/DAC power/energy to obtain a good approximation of the ASIC 
level. 
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3. Simulation of Neuromorphic Chip 
Accelerators 

3.1 Introduction to Neuromorphic Chip 
Simulation 

Focusing on achieving significant energy efficiency and security enhancements relies 
heavily on two key components: the photonic neural network (NN) accelerator and 
photonic security primitives (Physical Unclonable Functions - PUFs). A comprehensive 
system-level toolchain for modeling and simulation is essential to fully harness the 
potential of these photonic accelerators and seamlessly integrate them into a functional 
and programmable computing platform. NEUROPULS aims to design and implement a 
comprehensive simulation infrastructure to facilitate the utilization of photonic 
accelerators, such as NNs and PUFs, alongside other Phase Change Memory (PCM)-
based modules. These tools will empower the creation of system-level models that 
precisely capture the functionality and performance metrics of the photonic modules, 
including performance (timing) and power consumption. 

A pivotal aspect of this initiative is the development and implementation of simulation 
modules. This entails developing a simulation engine that efficiently implements 
complex and accurate system-level models tailored for different design and architecture 
exploration stages. We are constructing a simulation infrastructure that will model the 
hardware structures of a complete computing system comprising CPU cores (based on 
RISC-V ISA), memory hierarchy, and photonic NN accelerators. Interfaces between CPU 
cores and accelerators will be aligned with the accelerator implementation to ensure 
seamless integration. 

The simulation platform will consider the impact of all computing stack layers, including 
hardware, system software (such as the operating system), and application software. To 
achieve this, the framework will be built upon gem5, a state-of-the-art 
microarchitectural simulator. This foundational infrastructure, known as gem5-MARVEL, 
has been developed on top of the gem5 in the context of the NEUROPULS project. 
gem5-MARVEL supports RISC-V-based systems modeling with diverse accelerators and 
flexible interfaces. Detailed information regarding gem5-MARVEL can be found in the 
related deliverable D5.9 of the NEUROPULS project; therefore, we omit the detailed 
explanation in this deliverable.  

3.2    Neural Network Models for 
Simulation 

The gem5-based simulation infrastructure comprises two core components of the NN 
accelerator: the Compute Unit and the Communications Interface. The Compute Unit 
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represents the custom accelerator's datapath, while the Communications Interface 
facilitates memory access, control, and synchronization through memory access ports, 
Memory-Mapped Registers (MMRs), and interrupt lines. The memory access ports allow 
parallel access to different memory types like scratchpad memories (SPMs) and register 
banks (these two types of memories occupy the most significant part of the area of many 
accelerators). MMRs consist of configurable status, control, and data registers, enabling 
low-level device configuration and facilitating communication between the accelerator 
and the host as well as between multiple NN accelerators in a cluster. The host can utilize 
the provided interrupt signals for synchronization without constant polling by treating 
the NN accelerator as a memory-mapped device. 

Additionally, the gem5-based infrastructure includes Direct Memory Access (DMA) 
devices and custom memories that can be seamlessly integrated into accelerator 
designs, enhancing its versatility. Figure 2 shows the SoC architecture. Specifically, our 
tested accelerator designs are loosely coupled and communicate with the host CPU via 
MMRs and DMA transactions. The CPU writes the input and output memory addresses 
to the accelerator MMRs and directs the accelerator to start the computation. The 
accelerator transfers the data to its SPMs or Register Banks via DMA, performs the 
required calculations, and transfers it back to the system memory. After task completion, 
it notifies the host via a pre-defined interrupt. 

 
Figure 2: gem5-based SoC architecture and interconnection. 

3.3    Challenges in Simulating Large-Scale 
Neural Networks 
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Simulating accelerators for large-scale NNs poses several significant challenges due to 
the size and complexity of these systems. Some of the key challenges include: 

1. Computational Resources: Large-scale NNs may require vast computational 
resources to be simulated effectively. As the number of neurons and connections 
increases, the computational demands grow exponentially, requiring many 
computational resources to simulate effectively large-scale NNs, especially in 
cycle-level simulation, such as gem5 (the baseline simulator used in the 
NEUROPULS project). 

2. Scalability: Ensuring that simulation platforms can scale efficiently with the size 
of the NN is also a significant challenge. Scalability issues regarding 
computational performance and memory usage can arise, requiring innovative 
parallelism and distributed computing approaches. For example, to evaluate the 
reliability of an accelerator design, the gem5-MARVEL framework we have built in 
the context of the NEUROPULS project utilizes multiple systems and/or CPU cores 
to speed up the assessment, turning the simulation time problem into an 
infrastructure scale one.  

3. Synchronization and Communication Overhead: In distributed or parallel 
simulations, managing synchronization and communication overhead between 
computing nodes of CPU cores running different scenarios becomes critical. 
Minimizing latency and ensuring efficient data exchange are essential for 
maintaining simulation accuracy and performance. 

4. Parameter Tuning and Optimization: Large-scale NNs often have numerous 
parameters that must be tuned and optimized for effective performance. 
Parameter tuning and modeling of a specific NN can be time-consuming and 
computationally intensive, particularly when exploring a large parameter space. 

5. Validation and Verification: Validating the accuracy and reliability of simulation 
results for large-scale NNs may be challenging for specific accelerator designs due 
to the absence of ground truth data. Rigorous validation and verification 
methodologies are necessary to ensure the fidelity of simulation outcomes. For 
example, gem5-MARVEL (see details in the deliverable D5.9) runs the exact 
algorithm of a specific accelerator design on both the accelerator and the CPU to 
compare the results. In such a case, our simulation infrastructure ensures the 
validity of the results.  

To address these challenges, advanced simulation techniques, efficient algorithms, and 
simulation-scalable computing architectures are essential for enabling the simulation of 
large-scale NNs and unlocking their full potential for scientific research and practical 
applications. 

3.4    Metrics 
Simulators, especially gem5-based simulators, which are the primary vehicle of this 
project, inherently provide some information with respect to performance and other 
metrics abovementioned. However, in the context of the NEUROPULS project, we also 
offer several different metrics, which will provide essential information about the 
workload and accelerator design executions on a simulation platform. Below, we present 
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some crucial metrics regarding performance, power, and reliability of the workloads and 
NN accelerator designs that our simulation infrastructure will provide or metrics already 
implemented in our baseline simulation infrastructure. 

3.4.1 Performance and Area of NNs 

gem5-MARVEL is based on gem5-SALAM [4], which uses an advanced dynamic graph 
execution engine based on LLVM [5]. gem5-SALAM instruments the low-level virtual 
machine (LLVM) IR (Intermediate Representation) to model domain-specific 
accelerators (DSAs) using C descriptions of their functionality. gem5's tight integration 
enables seamless and intricate interaction between the accelerator and other system 
modules, including the CPU and the memory subsystem. Its high level of integration 
within gem5 allows for complex interaction between the accelerator and other system 
modules, such as the CPU and the memory subsystem. 

gem5-MARVEL also offers a range of performance metrics to users after simulation. 
Within the device setup, it specifies the cycle time required for each LLVM IR instruction 
to execute in the compute queues. Users can define hardware device latency and clock 
speed within the accelerator. This allows for accurate modeling and exploration of their 
impact on accelerator models' cycle counts, runtime, and functional unit occupancy. 

During dynamic runtime simulation, our infrastructure records the scheduling or in-
flight status of instructions for each cycle. This additional data, coupled with configurable 
hardware resources, provides a detailed analysis and exploration tool for examining 
occupancy levels within the system. 

The area estimation model utilizes parameters specified in a hardware profile and a 
device configuration file, which users can customize. The hardware profile contains 
details regarding different hardware components used by the accelerator (e.g., Multiply-
Accumulate Units). The device configuration file allows users to define and adjust the 
values according to the real characterization measurements and refine the allocation of 
hardware components. Using these parameters, the framework calculates the area 
estimations based on LLVM IR analysis of the C description of the accelerator inferring 
the datapath of the design, similarly to how high-level synthesis works in Register Time 
Level (RTL) design. 

 

3.4.2 Static and Dynamic Power 

gem5 offers a robust platform for modeling and simulating intricate computing systems, 
facilitating thorough analysis of computational performance and power attributes. We 
will focus on integrating key power-related metrics into our foundational gem5-MARVEL 
framework. 

In static power evaluation, our emphasis will be on estimating the power consumption 
of neural network (NN) models by considering architectural features and configuration 
parameters, irrespective of runtime behavior. This entails modeling the power usage of 
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individual hardware components, such as CPU cores, memory hierarchy, and 
accelerators, alongside their interactions within the system. Through analyzing static 
power characteristics, valuable insights can be extracted into the base power 
consumption of the system across varied operational conditions and setups. 

In dynamic power evaluation, our emphasis will be on the power consumption of NN 
models during runtime execution. It entails monitoring the power usage of hardware 
components as they process input data and execute computational tasks. Dynamic 
power evaluation will capture the fluctuating power consumption patterns stemming 
from diverse computational workloads, data dependencies, and hardware utilization 
levels. By examining dynamic power behavior, we can explore the energy efficiency of 
various NN designs and architectures, identifying potential obstacles for power 
optimization. This contributes to the simulation-based design space exploration, a core 
aspect of the NEUROPULS project. 

3.4.3 Reliability Evaluation 

gem5-MARVEL evaluates both the Architectural Vulnerability Factor (AVF) and the 
Hardware Vulnerability Factor (HVF) and provides accurate evaluation results using 
statistical fault injection for both metrics. A hardware structure's Hardware Vulnerability 
Factor (HVF) is the fraction of faults in the structure that are either activated within the 
hardware layer or exposed to a higher layer [6]. A hardware-visible fault is exposed to the 
user program once it reaches a software (or architecture-visible) resource [7]. 

gem5-MARVEL employs two vulnerability evaluation methodologies of different layers: 
the HVF assessment [6] and the AVF assessment, providing the partial 
microarchitecture-dependent vulnerability and the full cross-layer vulnerability, 
respectively. For accelerator designs, where the faults target the scratchpad memories 
of each design, the HVF and AVF analyses are identical. The reason is that the 
architecture of a domain-specific accelerator differs from that of a general-purpose CPU.  

In an accelerator design, any fault is eventually visible unless the fault hits an invalid or 
unused cell of the scratchpad memory. In that case, the fault is characterized as masked. 
The HVF analysis considers Benign faults, those faults that eventually get masked by a 
microarchitectural operation (e.g., a misprediction), and thus, the fault occurrence never 
reaches the commit stage of an out-of-order microprocessor (i.e., the fault is not 
architecturally visible). On the other hand, any fault that reaches the commit stage (i.e., 
architecturally visible) is considered a corruption and participates in the total HVF 
measurement. 

3.4.4 Performance-Aware Comparisons 

Regarding the reliability evaluations, AVF (Architectural Vulnerability Factor) is a pure 
reliability metric that does not provide any information about the system's performance. 
AVF alone cannot provide any insights into the tradeoff between the performance and 
reliability of a chip. To this end, gem5-MARVEL can compute a new simple reliability 
metric, Operations per Failure (OPF).  
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OPF is the number of times a workload is executed before a system failure happens. It is 
computed using the following formula: OPF = OPS / AVF, where OPS (Operations per 
Second) is the number of operations (i.e., tasks) the compute unit can perform during 1 
second. Assume, for example, the Matrix Multiplication algorithm, which performs 2 x N3 
operations, where N is the size of the matrices. Thus, OPS = 2 x N3 / Exec_Time.  

The OPF metric enables a combined performance and reliability analysis into a single 
metric. For the same workload that runs on different platforms (a CPU or an accelerator 
in our example), larger OPF values indicate a better tradeoff between reliability and 
performance (larger number of correct executions over time). 
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4. Security evaluation of 
NEUROPULS-based PUFs 

While developing Strong Physical Unclonable Functions (Strong PUFs), researchers 
often face challenges in assessing their security. One underlying problem is that security 
evaluation methods can sometimes be vague, subjective, hard to grasp, and technology-
dependent. In the context of Strong PUFs, we would like to achieve the unpredictability 
of the Challenge-Response-Pairs (CRPs) with respect to modeling attacks [8]. It must be 
unfeasible for an attacker to calculate unknown Responses to specific sets of Challenges. 
A fundamental advantage of such a property is that the interface to access the PUF can 
be publicly available [8]. 

What sounds straightforward is indeed hard to achieve and even harder to measure. As 
in many areas of computer security, we may only define necessary conditions that Strong 
PUFs should fulfill. Even though the fulfillment of sufficient conditions would lead to an 
overall acceptance of the security and unpredictability of Strong PUFs, we have no such 
metrics. Thus, including various metrics necessary to fulfill is even more critical. 
Therefore, we work on different approaches with which we will achieve a holistic picture 
of the behavior and security of novel PUF designs. 

Since standardized and easy-to-use metrics have yet to exist in Strong PUF research, we 
are also developing novel security metrics. In the first section, we discuss a new metric 
based on the visualization of the CRPs of Strong PUFs. Such visualizations are easy to use, 
comparable to other Strong PUFs, and usable even in the case of small sets of CRPs. A 
developed tool for such analysis helps to achieve these desirable goals. In the following 
section, we also outline other security metrics that should be used and applied in the 
context of NEUROPULS. These are modeling attacks, randomness testing, and 
measuring the response sensitivity to challenge variations. 

4.1 Development of Novel Visualization 
Metrics for Strong PUFs 

The following metric was initially proposed in [6] and, since then, further developed in 
the context of the NEUROPULS project. Since the thesis, we have worked on improving 
compression scores and implementing a tool that automatizes the analysis. 

The metric uses a numerical score and an equivalent visualization approach [9]. In the 
short term, we developed a specific and standardized format to arrange sets of CRPs in 
a quadratic picture. The standardization of that format has been previously extensively 
researched. As an example: given a 10-bit Arbiter PUF, 210 = 1024 CRPs in total (please note 
that such PUF has indeed not enough CRPs for being used as a secure Strong PUF given 
that brute force approaches could easily break it, but it is useful as an example).  

Furthermore, we have the whole set of CRPs simulated or measured, such that we have 
a dataset of 1024 CRPs. In the next step, we arrange the CRPs in a standardized manner. 
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The pixel (or field) is the corresponding Response to a Challenge. Further specifications 
of the standardized algorithm are laid out in a paper we are currently writing. Below, we 
show the results of different PUF architectures. The following images and tables are 
taken from the yet-unpublished paper. The CRPs are simulated with the tool pypuf [10]. 

 

 
Figure 3: Example of visualizations for different PUFs. 

As shown in Figure 3, the statistical behavior of different Strong PUFs is indeed 
distinguishable by eye inspection. Even more interesting we can see at first glance that 
the Arbiter PUF, the Bistable Ring PUF, and the Feed-Forward (FF) Arbiter PUF are far 
from random. However, as expected, the randomness increased when we increased k. 
Such behavior is well-known and matches previous experience from modeling attacks. 
As a comparison, we show an image generated with AES. 

Furthermore, there are two insets – one in green and one in red. These are numerical 
measurements with which we aim to capture the visual impression. The green insets are 
the so-called Singular Value Decomposition (SVD) Entropy of these images [11]. For the 
SVD Entropy, we empirically determined a desirable average score of 0.8583 for this size 
of the images. The red one is the memory of the image after compression with PNG. In 
simple words, a high compression score is desirable. Extending the previously named 
master thesis and the SVD Entropy, we mainly worked on the compression scores during 
the last months as they are the most promising ones. In the following table, we 
computed the scores for 100, 500, 1000, and 5000 k-XOR Arbiter PUF instances for each 
k. Table 1 shows both the SVD Entropy and the mean compression score. 
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Table 1: Mean SVD entropy and compression scores for a 10-bit k-XOR arbiter PUF. 

 
As expected, the scores increase with a larger k. With 5000 samples for each k, we can 
reliably distinguish different SVD Entropy scores up to k = 15. The SVD Entropy 
approaches the score 0.8583 and the PNG compression 2664 bits. As the compression 
score does not rely on an empirically defined desirable score, our research has shown 
that compression is a more suitable candidate for such a security metric. The results are 
to be published for other architectures as well. We already computed such tables for the 
Bistable Ring PUF and the Feed-Forward Arbiter PUF. Therefore, we can compare new 
PUF architectures with the same challenge length to existing PUF designs. 

As noted, a 10-bit Strong PUF with only 1024 CRPs must be more secure. However, can 
we also apply our metric to larger sets of CRPs, like from a 64-bit Strong PUF? The 
problem with a 64-bit Strong PUF is that we have a set of 264 CRPs, which we cannot 
show exhaustively in one image. So, we have to adapt the algorithm slightly. In a 
standardized fashion, we reduce the set of CRPs to specific subspaces. Our research has 
shown that such reduction does not lead to worse comparability of different k-XOR 
Arbiter PUFs. Table 2 shows the results of 64-bit k-XOR Arbiter PUFs. 
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Table 2: Mean SVD entropy and compression scores for a 10-bit k-XOR arbiter PUF. 

 
A remaining question is: How can we compare the security of PUFs in the context of 
NEUROPULS with previous architectures? As one promising approach, we compared 
different architectures with the already well-known and well-studied k-XOR Arbiter PUF. 
As such, we can differentiate both the visual impression and SVD Entropy scores and 
compression scores. For example, as it is well known from previous research, the Feed-
Forward Arbiter PUF (FF Arbiter PUF) is insecure. Our research has compared the FF 
Arbiter PUF with k-XOR Arbiter PUFs. The visual impression and the score show that the 
FF Arbiter PUF lies only between a 1-XOR Arbiter PUF and a 2-XOR Arbiter PUF. Moreover, 
the number of loops of the FF Arbiter PUF needs to be more relevant. Table 3 shows the 
scores for 64-bit FF Arbiter PUFs with several loops l: 

Table 3: Mean SVD entropy and compression scores for a 64-bit l-loop FF arbiter PUF. 

 
There are several advantages to employ such a metric. First, the metric works in a black-
box manner. That means researchers can find out the underlying architecture of a Strong 
PUF for analyzing security properties. Second, we achieved desirable results by 
comparing different architectures. These results match with the previous experience 
from modeling attacks and other metrics. Third, we use the human perception of 
randomness combined with a score as a single figure of merit. Fourth, the metric works 
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in the extended version for all challenge lengths. Still, the need for computational power 
or the size of a data set of CRPs is comparably low. To sum up, the metric is handy at the 
beginning of developing and designing new PUFs. 

Since such algorithms are tedious to implement, we have been working on a tool called 
pufvis. pufvis implements the above-described properties of the metric. Furthermore, it 
encapsulates the simulations of pypuf. Still, it is open to other CRPs and incorporates a 
simple-to-use Python interface. Since the design principles of the implementation follow 
extensibility, further metrics like the ones described below may be easily implemented 
and integrated as well. The long-term goal is a holistic set of security metrics that helps 
us understanding the behavior and the security of very different Strong PUF designs and 
architectures. 

4.2 Application of Further Metrics 
Such a visualization metric is a first step to secure Strong PUFs. However, we should 
again emphasize that such a metric is only a necessary condition, not a sufficient one. 
Therefore, we have to work on further metrics and applications. The most traditional, 
promising, and essential method is to apply modeling attacks on Strong PUFs [12]. Such 
attacks try to exploit the missing fulfillment of the unpredictability property. When such 
attacks are successful, we must accept that such Strong PUFs are not secure. On the 
contrary, unsuccessful attacks rather speak for the security of Strong PUFs. To get an 
overall and more comprehensive picture of the security of Strong PUFs, we may also 
apply further metrics beyond the visualization and modeling attacks. Two metrics suit 
that case: I) Randomness testing for uniqueness, bit-aliasing, and uniformity [13]. II) 
Measuring the response sensitivity to challenge variations [14]. 

Randomness testing is suitable since it has already been applied to many cryptographic 
applications. Furthermore, when such tests are successful, we may expect better 
unpredictability of CRPs. Such randomness testing is connected to the previously 
explained and novel visualization metrics. The latter can show visually when sets of CRPs 
are not random, as in the case of plain Arbiter PUFs. By comparing existing and simulated 
Strong PUF architectures, the results matched our previous experience and previous 
research on already broken PUF architectures. 

Measuring the response sensitivity to challenge variations is another easy-to-use and 
straightforward security metric for Strong PUFs. Developed in 2022 [14], such a metric 
examines whether small perturbations of challenges impact the response. Imagine, e.g., 
the case when the first bit of a Strong PUF with a challenge length of 64-bit does not 
influence the probability of flipping the response. Such behavior would be undesirable 
since an attacker could eliminate that bit's influence.  

Previous research shows that such behavior is visible in the Arbiter PUF design [14]. The 
first challenge bits have a low impact on the probability of flipping the response bit. On 
the contrary, the bits at the end of a challenge significantly impact the likelihood of 
flipping the response bit. Both properties are not desirable since we would like to achieve 
a probability of 50%. In that case, the attacker could not conclude, from a set of CRPs, the 
behavior of unknown CRPs. The findings of such probability tests match our research of 
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the visualizations remarkably well. However, to compare different PUF designs and 
architectures, there is a need for a single figure of merit, which is currently being under 
investigation.  

To sum up, our different perspectives on the security of Strong PUFs have led to a holistic 
set of metrics that shall be fulfilled. With these metrics' applications on the existing 
Strong PUF architectures like the Arbiter PUF or the Bistable Ring PUF, we may compare 
the results of the NEUROPULS project with existing designs. Even though the security 
degree might need to be improved further, we can precisely show which problems arise 
with which designs. Therefore, analysis with these metrics will lead to a more profound 
understanding of the behavior, security, and complex nature of the NEUROPULS PUFs. 
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Conclusion 
The NEUROPULS project foreseen outcomes span from the physical photonic 
architectures, including the neuromorphic accelerator and the PUF, to the simulation 
tools that will model it to support a fast prototyping and design space exploration. 

To pave the way to a meaningful benchmarking, this deliverable provides a set of metrics 
to address each aspect of the NEUROPULS products. It includes the most significant 
performance and energy consumption metrics to assess the low power target of the 
project. At the same time, the modeled digital twin in the simulation tool finds the 
definition of useful metrics not only to guarantee the quality of the modeling in terms of 
accuracy of the measurements, but also to confirm the potentiality to simulate bigger 
photonic counterparts that will be available in the future. 

Eventually, the PUF design and implementation is supported by a set of metrics that 
ensure the fair comparison with the state of the art and the quality of the fundamental 
security characteristics that are found in weak or strong PUFs. 

  



 

D6.1 Metrics – Public           25 

 

Bibliography 
 

[1]  G. Di Natale, D. Gizopoulos, S. Di Carlo, A. Bosio and R. Canal, Cross-Layer Reliability 
of Computing Systems, IET Digital Library, 2020, p. doi:10.1049/PBCS057E. 

[2]  A. Bosio, S. D. Carlo, M. Rebaudengo and A. Savino, "Toward the hardening of real-
time operating systems," in 2022 IEEE International Symposium on Defect and 
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Austin, TX, USA, 2022.  

[3]  A. Ruospo, G. Gavarini, C. de Sio, J. Guerrero, L. Sterpone, M. S. Reorda, E. Sanchez, R. 
Mariani, J. Aribido and J. Athavale, "Assessing Convolutional Neural Networks 
Reliability through Statistical Fault Injections,," in 2023 Design, Automation & Test 
in Europe Conference & Exhibition (DATE), Antwerp, Belgium , 2023.  

[4]  S. Rogers, J. Slycord, M. Baharani and H. Tabkhi, "gem5-salam: A system architecture 
for llvm-based accelerator modeling," in 2020 53rd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO), 2020.  

[5]  S. Rogers, J. Slycord, R. Raheja and H. Tabkhi, "Scalable llvm-based accelerator 
modeling in gem5," IEEE Computer Architecture Letters, vol. 18, no. 1, p. 18–21, 2019.  

[6]  V. Sridharan and D. R. Kaeli, "Using Hardware Vulnerability Factors to Enhance AVF 
Analysis," in Proceedings of the 37th Annual International Symposium on 
Computer Architecture, ser. ISCA ’10, New York, NY, USA, 2010.  

[7]  G. Papadimitriou and D. Gizopoulos, "Anatomy of On-Chip Memory Hardware Fault 
Effects Across the Layers," IEEE Transactions on Emerging Topics in Computing, pp. 
1–12, doi:10.1109/TETC.2022.3205808, 2022.  

[8]  U. Rührmair and D. E. Holcomb, "PUFs at a glance," in Design, Automation & Test in 
Europe Conference & Exhibition (DATE), Dresden, Germany, 2014.  

[9]  L. Lerch, "Security Metrics for Strong PUFs based on Effective 2D Visualization," 2023. 

[10]  N. Wisiol, C. Gräbnitz, C. Mühl, B. Zengin, T. Soroceanu, N. Pirnay, K. T. Mursi and A. 
Baliuka, "pypuf: Cryptanalysis of Physically Unclonable Functions," Zenodo, vol. 
Version v2, p. doi:10.5281/zenodo.3901410, August 2021.  

[11]  O. Alter, P. O. Brown and D. Botstein, "Singular value decomposition for genome-
wide expression data processing and modeling," in Proc. Natl. Acad. Sci., USA, 2000.  

[12]  U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas and J. Schmidhuber, "Modeling 
attacks on physical unclonable functions," in 17th ACM conference on Computer 
and communications security (CCS '10), 2010.  
 



 

D6.1 Metrics – Public           26 

 

[13]  A. Maiti, V. Gunreddy, and P. Schaumont, A Systematic Method to Evaluate and 
Compare the Performance of Physical Unclonable Functions, Cryptology ePrint 
Archive, 2011. https://eprint.iacr.org/2011/657.pdf 

[14]  F. Kappelhoff, R. Rasche, D. Mukhopadhyay and U. Rührmair, "Strong PUF Security 
Metrics: Response Sensitivity to Small Challenge Perturbations," in 2022 23rd 
International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, 
USA, 2022.  

 

 

 

 

 

 


