

Co-funded by the EU H2020 GA. 723139 and NICT GA. 18301

WP2 Programmable Smart City

D2.4 Distributed data-flow programming tool

-Demonstration

Grant Agreement N°723139

NICT management number: 18301

BIGCLOUT

Big data meeting Cloud and IoT

for empowering the citizen ClouT in smart cities

H2020-EUJ-2016 EU-Japan Joint Call

EU Editor: LANC JP Editor: KEIO Nature: Demonstrator

Dissemination: PU

Contractual delivery date: 2018-07-01

Submission Date: 2018-07-04

This

2

ABS TR AC T

This deliverable describes the first demonstrators of the Distributed data flow programming tool used as

part of the BigClouT architecture.

Disclaimer

This document has been produced in the context of the BigClouT Project which is jointly funded by the
European Commission (grant agreement n° 723139) and NICT from Japan (management number
18301). All information provided in this document is provided "as is" and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability. This document contains material, which is the copyright of certain BigClouT
partners, and may not be reproduced or copied without permission. All BigClouT consortium partners
have agreed to the full publication of this document. The commercial use of any information contained
in this document may require a license from the owner of that information.
For the avoidance of all doubts, the European Commission and NICT have no liability in respect of this
document, which is merely representing the view of the project consortium. This document is subject
to change without notice.

Revision history

Revision Date Description Author (Organisation)

V0.0 2018-4-27 Initial ToC RJL (LANC)

V0.1 2018-5-05 Initial text RJL (LANC)

V0.2 2018-5-21 More text RJL (LANC)

V0.3 2018-5-23 Tidied + added diags RJL (LANC)

V0.4 2018-5-28 Keio text TY (KEIO)

V0.5 2018-5-30 Lanc scenario MB (LANC)

V0.6 2018-06-04 Merged updates RJL (LANC)

V0.7 2018-06-08 Finalized for review RJL/TY/MB

V1.0 2018-06-18 Reviewers comments RJL

3

TABLE OF CONTENT

1 INTRODUCTION ... 5

1.1 SCOPE OF THE DOCUMENT ... 5
1.2 TARGET AUDIENCE .. 5
1.3 STRUCTURE OF THE DOCUMENT .. 5

2 GOALS OF THE DISTRIBUTED DATA FLOW PROGRAMMING TOOL: DISTRIBUTED NODE-RED 5

2.1 OVERVIEW OF THE DEMO ... 6

3 DISTRIBUTED NODE-RED (D-NR) .. 7

3.1 SERVICE COMPOSITION: D-NR STUDIO (VISUAL PROGRAMMING TOOL) ... 7
3.2 EDGE PROCESSING: D-NR PLATFORM (FOG/EDGE COMPUTING CAPABILITY) ... 8
3.3 CONSTRAINTS: SUPPORTING MORE COMPLEX, LARGER SCALE APPLICATIONS ... 9

3.3.1 Constraint-based Distribution ... 9
3.3.2 distribution architecture .. 10

4 CORE DEMONSTRATION .. 11

4.1.1 Road infrastructure monitoring – basic scenario .. 11
4.1.2 Road infrastructure sensing: Details ... 13

5 SUPPORT DEMONSTRATIONS .. 15

5.1 HOME SENSING, ENERGY MANAGEMENT AND POLLUTION ... 15
5.2 TRAFFIC MANAGEMENT IN SMART CITIES... 18

6 CONCLUSION ... 18

4

LIST OF FIGURES
Figure 1 : Distributed data flow programming tool - architectural positioning 6
Figure 2: Visual programming using a drag and drop metaphor ... 7
Figure 3: Distributed deployment to edge devices using D-NR in BigClouT ... 8
Figure 4: Specifiying constraints associated with processing modules in a dataflow program 9
Figure 5: Distributed coordination via brokers managing edge processors .. 10
Figure 6: Overall flow of road monitoring demonstrator .. 12

file://///Users/rlea/Library/Containers/com.microsoft.Word/Data/Downloads/BigClouT_Deliverable_D2.4-FINAL.docx%23_Toc517269746
file://///Users/rlea/Library/Containers/com.microsoft.Word/Data/Downloads/BigClouT_Deliverable_D2.4-FINAL.docx%23_Toc517269747
file://///Users/rlea/Library/Containers/com.microsoft.Word/Data/Downloads/BigClouT_Deliverable_D2.4-FINAL.docx%23_Toc517269748
file://///Users/rlea/Library/Containers/com.microsoft.Word/Data/Downloads/BigClouT_Deliverable_D2.4-FINAL.docx%23_Toc517269749
file://///Users/rlea/Library/Containers/com.microsoft.Word/Data/Downloads/BigClouT_Deliverable_D2.4-FINAL.docx%23_Toc517269750
file://///Users/rlea/Library/Containers/com.microsoft.Word/Data/Downloads/BigClouT_Deliverable_D2.4-FINAL.docx%23_Toc517269751

5

1 INTRODUCTION

1.1 Scope of the Document

This deliverable describes the demonstration of the Distributed Dataflow programming tool
developed within WP2 of the BigClouT project and designed to offer an easy programming tool
for the development of edge based Smart City applications.

The tool, referred to as Distributed-NodeRed (D-NR), is based on the open source visual
programming tool, Node-RED, augmented with support for distributed and edge processing and
integrated into the BigClouT architecture.

1.2 Target Audience

The target audience of this deliverable are mainly the following groups:

 BigClouT project members / developers – who are currently involved in the project and
are responsible for this platform or other parts of BigClouT. This document can serve as a
reference to facilitate members to understand the existing functionality, further
implement new ones, or modify existing ones.

 Smart City Ecosystem integrators - who plan to develop a smart city ecosystem based on
the BigClouT reference. The document outlines the relevant components of the tool and
details the technical implementation, which is a good source of information to provide an
in-depth understanding of the platform.

1.3 Structure of the Document

The document provides a general overview of the goals of the tool (section 2), and in depth
discussion of the architecture and features (section 3) and then describes (section 4) the core
demonstrator that has been developed to showcase the capabilities of the tool when used as part
of an ongoing trial – in this case in Fujisawa. Finally, section 5 discusses 2 support demonstrators
that have also been developed that showcase specific aspects of the tool.

2 GOALS OF THE DISTRIBUTED DATA FLOW PROGRAMMING TOOL:
DISTRIBUTED NODE-RED

The distributed data-flow programming tool is designed to address a number of key issues:

 conform to the BigClouT architecture as a service composition tool (see D1.3)

 provide an easy to use visual programming metaphor incorporating data flow

 support the BigClouT edge processing needs

To achieve these aims, the project has extended the open source tool, Node-RED, which provides
a basic data flow capability combined with a visual programming model that supports JavaScript.
Extensions to the open source Node-RED language include support for the distributed edge
processing based on a 'fog computing' model as well as integration into the overall BigClouT
architecture.

6

These extensions are implemented into the core D-NR platform (which supports the edge
processing mechanisms) and to the visual programming tool (D-NR studio) that supports the
specification and application of the policy developers wish used to control the distributed nature
of the BigClouT application. The core D-NR platform forms part of the Edge storage, a computing
subsystem of the BigClouT architecture (specifically the edge computing management system
(See Figure 1 above) and the D-NR studio implements the edge composer tool which is part of the
City Service Composition subsystem.

2.1 Overview of the demo

To demonstrate the core capabilities of BigClouT's distributed data flow programming tool we
have used the core tool to implement a distributed processing feature that is part of the Fujisawa
core infrastructure field trial. In this core infrastructure trial, Fujisawa city staff are able to
monitor the status of the road network, and in particular the road surface conditions and the
quality of the road markings, by analysing real time video captured by a fleet of garbage trucks as
they work within the city. The demonstrator shows how data is captured and analysed by edge
processors running in the garbage trucks, data is collated from the city using D-NR, and then issues
are analysed by viewing specific video recordings. A specific feature of the demo, apart from its
use of WP2 T2.4 technologies, i.e. distributed edge processing and the distributed data flow
programming tool, is its ability to protect privacy by hiding data such as faces and car number
plates using a WP3 contribution “Deep on Edge”. Lastly, another WP3 tool, Knowage, is used to
visualise aggregated data from the city as a whole.

In addition to the Fujisawa trial demo we have developed two other demonstrators that highlight
key aspects of the D-NR tool. The first is a demonstrator aligned with the Bristol smart Energy

FIGURE 1 : DISTRIBUTED DATA FLOW PROGRAMMING TOOL - ARCHITECTURAL POSITIONING

7

trial. It consists of a set of home sensors gathering energy (and pollution) data from the home
using a local instance of the D-NR run-time. These data are then batched and sent via internet to
a cloud server also running an instance of the D-NR run-time. The data are then analysed and
presented using the visualisation capabilities of D-NR.

A third demo is also available that shows the internal workings of the D-NR tool and its dynamic
capabilities. The demo shows the use of edge processing to distribute load across a distributed
application as network and computation resources change due to processing needs. In the demo,
a smart traffic application is shown which monitors traffic in a city. As traffic builds towards rush
hour, more computation and network resources are required to monitor the traffic and the D-NT
dynamically adapts to meet the need.

3 DISTRIBUTED NODE-RED (D-NR)

The distributed data flow programming tool D-NR is split into two core components: Studio and
Platform. Studio provides a visual programming tool allowing service composition by dragging
and dropping application components onto a visual drawing board and wiring the components
together to form a flow. While the D-NR platform supports edge processing and dynamic load
balancing across the BigClouT network.

3.1 Service composition: D-NR studio (visual programming tool)

Service composition uses a set of pre-defined building blocks that are wired together to form the
application logic.

In Figure 2 a basic air quality application is shown that reads data from the BigClouT data
warehouse (sensor data from Bristol) and visualises the data on a dashboard.

The data flow from left to right through the application, traversing the 'wires' between the
processing nodes. Each node receives data, carries out some processing and sends the data to the
next processing node in the flow.

3.2 Edge processing: D-NR platform (fog/edge computing capability)

To extend Node-RED to meet the BigClouT need for a service composition tool with support for
edge processing we addressed a number of key issues:

FIGURE 2: VISUAL PROGRAMMING USING A DRAG AND DROP METAPHOR

8

 Developing a model to describe devices and their capabilities and incorporating into the
Node-RED development tool.

 Supporting a language transparent mechanism to allow nodes in the application flow to
be moved to remote devices.

 Defining a constraint model that allowed application developers to specify constraints for
different parts of their application flow, which then drove the underlying distribution and
replication mechanisms.

We introduced the notion of device to the dataflow language. Accordingly, every node in a dataflow
program is augmented with a new device Id constraint that specifies on which device the node
should be deployed and run. For example, a node can be constrained to be deployed on an edge
device, a mobile host, a cloud server or on any intermediary device across the edge to the cloud.

The second augmentation made to Node-RED was the notion of "remote wires" or "remote arcs".
Since the nodes may run on separate devices, the existing Node-RED wires - which represent
dataflow links between processing nodes - have to support inter-device communication to handle
the situation where a flow is broken up and its nodes are distributed to several devices. This is
implemented using a publish/subscribe communication mechanism that binds the nodes
together. The key idea is to leverage the node identifications as the topic for publishing and
subscribing. Further, a flow transformation process is applied so that the nodes that do not meet
the deployment requirement (e.g. run on "mobile", "laptop" or "server") will be replaced with a
wire in or a wire out node. wire in nodes subscribe to the communication broker so that it can
receive data from the external node running on a different device. wire out nodes receive data
from the local node and publishes it to the communication broker so that the wire in node from

the other side can pick it up. Figure 3 illustrates this process of supporting the distributed
deployment of a Node-RED flow across multiple devices.

FIGURE 3: DISTRIBUTED DEPLOYMENT TO EDGE DEVICES USING D-NR
IN BIGCLOUT

9

3.3 Constraints: Supporting More Complex, Larger Scale Applications

To support larger scale BigClouT applications, we augmented the basic device specification
capability with a constraint tool. This allowed developers to define a set of constraints for a part
of the flow, e.g. a node should run on a device with 4MB of memory, a 4 core CPU and is physically
located in the Henleaze area of Bristol city.

3.3.1 Constraint-based Distribution

This more sophisticated mechanism allows scenarios such as:

 A sensor node mounted on a moving vehicle could be restricted to operate in a certain
location.

 A vision processing node might be restricted to operate in a more capable computing
device.

To address these needs, we introduced the constraint primitive as a broader abstraction that
specifies how a node is deployed and run in a distributed computing setting. Accordingly, every
node in a dataflow program is augmented with a constraint property that defines how the
deployment is carried out. In BigClouT, a constraint involves the requirements on device
identification, computing resources such as CPU and memory and physical location.

The goal is to make the application model more suitable for a class of fog-based applications that
are heavily dependent on the context associated with the edge devices they operate on. As a result,
the developer can not only specify which type of device a node should run on (e.g mobile, server
or laptop, etc.) but can further constrain where the node should run based on a variety of aspects
such as memory size, processing capability, location etc. To address this need, we added support
to allow application developers to specify these node constraints via the programming user

interface. As can be seen in Figure 4 (above) a developer has associated a set of constraints, e.g.
on server named example.com, or any device with 2CPU cores and 500MB of free memory.

FIGURE 4: SPECIFIYING CONSTRAINTS ASSOCIATED WITH PROCESSING MODULES IN A DATAFLOW
PROGRAM

10

3.3.2 Distribution architecture

These capabilities allow us to support the edge processing needs of BigClouT. Once deployed, an
application is constantly monitored and its constraints are evaluated. As the application's
environment (or context) changes, the D-NR platform re-evaluates the constraints and
redistributes processing across the fog network. This provides a dynamic edge processing
capability that is not specifically programmed by BigClouT developers, but is derived implicitly
from the constraints they define for an application.

As it can be seen in Figure 5, this is accomplished by a set of coordinated brokers that work
together to initially distribute applications and then to monitor them as they run and to make
decisions on when to move edge processing.

Node brokers

DNR
Operator

Node
Node

Node

Node

Coordination Communications

Distributed Flow
design,
deployment
Coordinating

Data Communications

FIGURE 5: DISTRIBUTED COORDINATION VIA BROKERS MANAGING EDGE PROCESSORS

11

4 CORE DEMONSTRATION

We demonstrate how BigClouT architecture and its implementation provides distributed city
service which solves city management problem. This section describes our basic scenario firstly,
then we describe its implementation and demonstration.

4.1.1 Road infrastructure monitoring – basic scenario

In Japan, the problem of aging road infrastructure is increasingly important since around half of
the road network (including bridges) was originally built 40 years ago. To repair roads and road-
related equipment such as mirrors and road markings, it is important to understand which area
of the city has what kind/level of problem. Currently, the municipality just inspect road condition
of limited areas (mainly national roads) once every several years. Thus, the condition of most
roads in the city is not monitored.

During discussions with the road management section in Fujisawa city, we found that they need
to specify priority for roads to be repaired. In addition, it is desirable to check actual road status
visually to confirm the necessity of repair. To meet the requirements, we provided the following
scenario which contains three phases of road infrastructure management. The scenario leverages
garbage trucks as sensors, something that was demonstrated at the first review of the project.
Figure 6 shows the overall scenario used in the demonstration which consists of three phases.

Phase1 Macro Sensing

Garbage trucks cover more than 98% of the road network in a week, so we can collect
complete/full road health condition by attaching sensors and edge computational resources to
garbage trucks. Uploading all of the road images is unrealistic because of limited network
bandwidth. Thus, we analyse road status such as condition level with GPS coordination at edge-
side (computer on garbage truck). The analysis leverages an edge analysis component called
DeepOnEdge developed as part of WP3. Analysis results from all garbage trucks are collected and
published to the BigClouT data warehouse by using the distributed data flow component called
distributed Node-RED (D-NR) developed in WP2.

Phase2 Priority Decision

Once the road condition level of the whole city is determined, the priority for each road is
determined, i.e. which roads must be repaired as soon as possible. For setting reasonable priority,
in addition to road damage information, various conditions such as how many people/cars use
the road should be considered. For combining and analysing different data, we utilise the big data
analysis component called KNOWAGE developed in WP3. According to defined priority, micro
sensing operation is sent to each garbage trucks by D-NR.

Phase3 Micro Sensing with Privacy Protection

To meet the requirement that city officers see the actual road image (i.e. a visual confirmation),
the last phase is to upload actual image of roads to be repaired from garbage truck sensors. Image
taken by garbage trucks may contain privacy information such as faces of pedestrians or car
numbers. Therefore, such privacy information should be removed before sending the image.

12

Which means that “anonymisation” of the images must take place by using the DeepOnEdge
component. Finally, anonymised images from specific roads are collected through D-NR, and city
officers can make plans of road repairs.

4.1.2 Road infrastructure sensing: Details

The scenario is detailed as follows. For the review, the demonstration will use a live network of
devices, but will rely on captured movie/data replay to show live demonstration.

Phase1: Macro Sensing
- Road damage detection on edge
 Introducing designed new edge hardware based on Jetson for deploying to actual garbage

trucks

Phase	1:	Macro	Sensing:	
collecting	all	road	health	condition	from		entire	city	(condition/lat/lon)

Phase	2:	Priority	Decision:	
specifying	area	to	be	inspected	more	specifically

Phase	3:	Micro	Sensing	with	Privacy	Protection:	
uploading	specific	area’s	anonymized	image

upload

anonymizing

FIGURE 6: OVERALL FLOW OF ROAD MONITORING DEMONSTRATOR

13

 Live preview of how DeepOnEdge detects several examples of road damage

- Aggregating damage information from multiple trucks
 Presenting overall process flow defined by D-NR
 Demonstrating how the flow is deployed to each device
 Demonstrating how detected road information is aggregated and published to BigClouT data

warehouse (CKAN repository)

14

Phase2: Priority Decision
- Understanding road condition from whole city by KNOWAGE
 Demonstration of how BigClouT data warehouse (CKAN) data import to KNOWAGE

 Presenting visualisation of road damage information as map-interface

- Deciding priority by combining several city information
 Presenting how we analyse different city data to decide priority for repairing road
 Demonstrating how micro sensing operation is sent to each devices via D-NR

Phase3: Micro Sensing
- Image anonymisation on edge
 Demonstrating how the edge detects privacy data and anonymises it

- Anonymised image transfer

15

 Presenting how anonymised image can be transferred via D-NR

5 SUPPORT DEMONSTRATIONS

In addition to the core demonstration described above, we have two other demonstrators

available which highlight other aspects of the visual programming tool D-NR.

5.1 Home sensing, energy management and pollution

In line with the Bristol city (BIO) scenarios, we will demonstrate a basic framework using the edge
processing of BigClouT (based on D-NR) for distributed home sensing. This demonstration will
include processing done at the sensor, within the premises and in the cloud. Driven by fine-
grained information collected at a local level, this hierarchical (and distributed) processing
architecture is able to make data-driven decisions at different layers. This includes real-time
decisions made locally, such as alerting and analytics, as well as macro insights made across many
different households. Potential sources of information may include home energy sensing, on a per-
plug basis. This enables detailed usage information to be captured regularly. This can be used by
the user to understand their consumption patterns, but also by local authorities and planners
when designing for future growth and expansion in infrastructure.

Pollution sensing in the home is another potential aspect to be considered. By collecting
information locally, householders can better understand the current levels of pollution within
their own home and ensure that they are within reasonable tolerances. If limits are breached, then
an alerting platform can be used to warn the user, who can then take appropriate measures to
counteract any potential harmful side-effects. When this information is correlated across many
households, local councils and governments can identify hotspots of pollution, and seek to
understand the cause of these issues. Unlike a householder, they are empowered to regulate and
curb such pollution causing practices and can therefore act to remedy the situation. In both cases,
the distributed nature of the platform allows for a number of stakeholders to gain relevant and
contextualised information in a meaningful and timely manner.

To realise this supporting demonstration, a small-scale deployment will be made. This includes

the installation of both sensors and fog computing resources in a home environment, similar to

the dwellings in which such a system would be likely deployed. Furthermore, rather than using a

lab-based setup, this also provides genuine real-time data, allowing the end-to-end system to be

tested in a meaningful and realistic manner.

Pollution monitoring is achieved using a Nova SDS011 Air Quality Sensor. This enables live

monitoring of PM2.5 and PM10 values in the local atmosphere. These two metrics are key

indicators of air quality and cover a wide-range of pollution types. When coupled with a high-level

of accuracy and cost effectiveness, these sensors make an ideal candidate for mass deployment in

homes and residencies. This sensor is directly connected to a Raspberry Pi, which periodically

reads the various values of the sensor. Importantly, the Pi is acting as a D-NR node, and has Node-

RED software running on it. This facilitates the direct reading of data into the platform.

Once this pollution data is ingested, it can be processed, manipulated and altered at any point. In

this case, local processing will take place at the node. This can be configured from within the Studio

16

element of D-NR, and requires no specific configuration, nor explicit change, compared to building

and deploying a stream in a non-distributed environment. The sensor-based (most local to the

sensor itself) processing will be conducting basic averaging of the readings, and is used to provide

a still frequent, but somewhat condensed, 10-second moving average of pollution levels in the

immediate locality.

A similar deployment is used for the energy monitoring capability. Two through-plug energy

monitors are deployed throughout the home. These report current usage statistics back to a

Raspberry Pi using a proprietary radio technology. Data is again retrieved and ingested through

the use of Node-RED. Once this data is ingested within the system, it is again parsed locally on the

nearest connected D-NR node.

As with the pollution sensing, the node performs basic aggregation at this point, configured from

a central point using the Studio element of D-NR. In both cases, only simple aggregation is

conducted; this can be replaced with more sophisticated sampling and manipulation as required.

This is where the constraint-based distribution features of D-NR are particularly appropriate:

devices can be chosen based upon their capabilities, including processing power and memory.

This ensures that intensive tasks are only completed on devices capable of doing so and avoids

the unnecessary saturation of less-capable devices. Given that such limited devices these may be

located close to the edge of a network (such a near to a sensor), D-NR allows for this capability to

be considered when locating functionality.

Once both data types are ingested into D-NR, and pre-processed at source, the data can then be

sent freely to other nodes, on which further actions can be achieved. For the purposes of this

demonstration, the data will be sent immediately to a further D-NR node, operating still within

the home environment. Whereas the other nodes are connected directly to sensors (of differing

types), this node has no such connections, and is dedicated solely to processing the data collected

within the home. As such, it will collate the information received from both sources, and provides

a simple visualisation to the user. Furthermore, it stores the data for longer-term retention

(resource permitting), allowing some historical analysis to take place if required.

It is this device that will conduct more sophisticated analysis of the data. Rather than sending the

entire untouched dataset straight to a central repository (in this case, a D-NR node located in a

cloud environment, to be discussed later), insights can be derived locally. Not only does this

prevent bandwidth intensive traffic from traversing potentially limited Internet connections, it

also maintains aspects of privacy, as this potentially sensitive data never leaves the users home.

Furthermore, this approach reduces processing latency, and allows immediate actions to be taken

if necessary.

More pertinently in the case of pollution, this may involve alerting householders when pollution

levels are considered above normal, allowing citizens to take immediate action such as closing

windows. In the case of this demonstration, this is realised by illuminating a simple LED light when

these circumstances occur. This is again realised through the use of Node-RED, which allows

interaction with the physical world too. In these instances, latency is critical; delay may cause

inconvenience, or at worst lasting damage, if left unreported.

This demonstration focuses primarily on these two aspects: pollution and energy usage. However,

the system can be easily and readily adapted to add new sensors. It is envisaged that this node,

17

located in the premises itself, will act as a gateway for the different sensing and control systems

that may ordinarily, or at least in the future, be deployed in such a household.

The final location in which a node will be deployed is in a cloud-like environment. More

specifically for the purposes of this demonstration, this involves hosting a D-NR node at Lancaster

University. Although this demonstration is intentionally limited to a single-household for the

purposes of supporting larger-scale endeavours, it is envisaged that multiple households would

deploy a similar arrangement (in terms of pollution, energy and other such sensors).

In this configuration, each household (as the aggregating D-NR node within each) would then

connect to a centralised point. Here, it would be possible to collate and aggregate data amongst

these many different locations, which gives a much broader and wider view of the current state of

each of these aspects. Given the richer capabilities located within a household (compared to

current provision), further summarised data can be provided to this centralised node, at much

longer timescales compared to those proposed for the home itself. Furthermore, this capability

allows for anonymisation and privacy preserving processes to take place directly in the home; the

centrally collected data is already in a state fit for sharing.

At this point, real-time alerting and visualisation is less important. Instead, longer-term trends,

particularly those involving wider geographical locations, can be observed. Given the potential for

considerable compute and storage capacity in this environment, where there are fewer limitations

around device constraints, sophisticated and intensive analysis can be conducted. The ability to

use large-scale storage arrays also enables the retention of data over much greater periods. This

enables the investigation of historical trends, and more importantly, grants the ability to observe

any improvements or degradation as the result of actions made at a much larger scale.

As with before, the household node will be directly wired to the cloud-based nodes. This can be

achieved through wiring the functions together and allowing D-NR to determine the appropriate

nodes on which to run each function, given the relevant constraints. This uses the same D-NR

Studio interface, further demonstrating the capability of developing a coherent and combined data

processing platform using a single familiar interface. It is also envisaged that this demonstration

will highlight the advantages of locating and using resources in many different locations, but with

the caveat that constraints must be effectively considered for this to be successful.

5.2 Traffic management in Smart Cities

In this demonstration we show the use of the BigClouT D-NR platform to support a large scale

traffic management scenario in a large city. Basic traffic management is enabled by sensors around

the city determining the levels of traffic flow through key intersections in the city. To support this,

we use a D-NR application that is running at edge processors throughout the city and using

cameras to monitor traffic. The camera monitoring uses image recognition techniques to count he

cars passing through a junction and to determine average vehicle speed and make/model of

vehicle.

The D-NR application makes use of the dynamic nature of the edge processing platform by using

a basic self aware mechanism. As load on a particular sensor processing node increase, e.g. as

traffic volumes increase and the processing required to track traffic this also increases, the

application dynamically reconfigures itself to move processing load to other nodes in the network.

18

To demonstrate this dynamic edge processing capability, we visualise the internal processing of
the D-NR platform to show the resources consumption of participating devices using the DNR-
Studio tool so we can visualise the devices' load in real-time. For example, currently we have a
device monitor tab in D-NR, we can show resource bars for each device, e.g. a CPU bar and a
memory bar.

Secondly, we simulate a wide area city settings by running several participating Node-RED
instances, in a laptop, and using the Jetson edge processing board which are installed in the
Fujisawa garbage trucks.

The basic application flow consists of 3 basic nodes, camera capture, image extraction and vehicle
recognition and identification. The third node is a complex AI algorithm that requires significant
processing. Our demo deploys this flow, as a distributed application, to a server and 2 edge
processors. Once the application is started, the D-NR edge processing platform monitors load on
the overall network and automatically balances load by starting and stopping edge processors as
load increases. For the demonstrator, we visualize the internal workings of the D-NR platform by
showing load on the individual edge processors and overall identification results.

6 CONCLUSION

The distributed dataflow programming tool, D-NR has been developed as part of WP2, T2.4 and
described in this document. To demonstrate its capability and integration into the BigClouT
architecture we have described a core demonstrator and 2 support demonstrations that highlight
features and capabilities of D-NR. These demonstrations illustrate a number of key points:

 Distributed data flow and managed edge processing

 Visual programming using flexible constraints to control edge processing

 Dynamic behaviour as the system responds to changes in the environment

 Integration with BigClouT data warehouse and WP3 components, Deep on Edge and
KNOWAGE

