

Quality along the Dairy Chain for a Safe and Sustainable MILK PRIMA S2 – 2018

Deliverable number: D6.2 of WP6 Deliverable title: Mechanisms of EOs encapsulation and selection of the most stable and efficient one

Due date of milestone: M26

Document information

1. Authors

Organisation name lead contracto	or: Center of Bio	Center of Biotechnology of Borj Cedria (LPAM)			
Author	Organisation	Email			
1. Ibtissem HAMROUNI	CBBC	Ibtissem_hfr@yahoo.fr			
2. Hanen FALLEH	CBBC	Hanenfalleh@gmail.com			
3. Wided MEGDICHE-KSOURI	CBBC	megdichewided@gmail.com			
4. Raja Serairi	CBBC	raja_serairi@yahoo.fr			

5. Revision history

Version	Date	Modified by	Comments
1			

6. Dissemination level

PUPublicyesCOConfidential, only for members of the consortiumno

MilkQua Deliverable Mechanisms of EOs encapsulation and selection of the most stable and efficient one 1

Executive Summary

Background	In previous tasks and deliverables of the project, <i>Thymus capitatus</i> essensial oil was
	selected for the further investigations considering its important biological activities.
	To preserve these activities, EO needs to be encapsulated in suitable delivery
	systems compatible with food applications. The delivery in nanoemulsions seems
	to ameliorate the efficacy of EO active compounds. Because of their nano-sized
	droplet that increases the active surface area, nanoemulsions are assumed to have
	a superior antimicrobial activity than conventional emulsions with significantly
	higher droplet size. The formulation process is a big problem as it requires many
	experiments that consume important EO amounts, time and resources. One of the
	best promising solutions to this problem is the experimental design methodology.
	Response surface methodology (RSM) represents a suitable alternative to reduce
	the experiment number perceptibly, while predicting the results with high
	accuracy. The RSM establishes better or innovative formulations meeting the
	requirements of the optimal requests and generates accurate conceptions about
	responses as well as interactions between independent factors.
	an efficient and stable nanoemulsion
Objectives	The encapsulation of thyme EO into an emulsion-based delivery system will be
	optimized using RSM targeting the smallest possible droplet size (nano-scale) and
	the better stability (low PDI). For this purpose, low-energy technologies of
	encapsulation will be adopted including the use of Ultrathorax and/or sonication
	apparatus. Different ingredients will be screened such as emulsifier, dispersed and
	aqueuses phase's caracteristics (ratio and compositions). The selected emulsion
	will be assessed for its physico-chemical proprities.
Methods	Experimental design.
	RSM was used in order to optimize the emulsification parameters. Four
	independent variables of stirring time (X1) ranging from 0-6 min, the sonication
	independent variables of stirring time (X1) ranging from 0-6 min, the sonication time (X2) (from 0-30 min], the percentage of the dispersed phase (X3) ranging from
	independent variables of stirring time (X1) ranging from 0-6 min, the sonication time (X2) (from 0-30 min], the percentage of the dispersed phase (X3) ranging from [5-15%] and percentage of the continuous phase (X4), vary in the range of [1-10%]
	independent variables of stirring time (X1) ranging from 0-6 min, the sonication time (X2) (from 0-30 min], the percentage of the dispersed phase (X3) ranging from [5-15%] and percentage of the continuous phase (X4), vary in the range of [1-10%] were investigated. A response surface plane, spherical type, 1 st degree hadamard
	independent variables of stirring time (X1) ranging from 0-6 min, the sonication time (X2) (from 0-30 min], the percentage of the dispersed phase (X3) ranging from [5-15%] and percentage of the continuous phase (X4), vary in the range of [1-10%] were investigated. A response surface plane, spherical type, 1 st degree hadamard was applied in order to study the effect of the independent variables (X1, X2, X3 and V4).
	independent variables of stirring time (X1) ranging from 0-6 min, the sonication time (X2) (from 0-30 min], the percentage of the dispersed phase (X3) ranging from [5-15%] and percentage of the continuous phase (X4), vary in the range of [1-10%] were investigated. A response surface plane, spherical type, 1 st degree hadamard was applied in order to study the effect of the independent variables (X1, X2, X3 and X4) on the response: diameter of the dispersed oil droplets ($d_{3,2}$). A total of 13

Results and implications	Models fit The 13 run it can be ob scale (runs separation diameter, e stabilité (d Table 1. Ex	ting and s were ran served th 1,2,3,5,7, (runs 12 experimer 3.2 = 463 m experiment Coded	statistica ndomly as at obtaine 8,9,10 and and 13). T at 5 seems m). cal Design value fro	l analysis sessed in ed emulsio d 11) to th Taking into s to presen of the four	triplicate ns diame ne milli-so conside nt the bet r-factor tl	(Table 1). According to th ters varies greatly from th cale (runs 4 and 6) to eve ration the desired lowest cter homogeneity and the nree-level observed respo	is table, ne nano- n phase droplet highest nses
			varia	ables			
						Response	
	Run order	X1	X2	X3	X4	Y _{d3.2} (nm)	
	1	0	0	15	1	648,7	
	2	0	8	12	8	490,0	
	3	6	0	5	7	746,4	
	4	6	30	5	1	1035,7	
	5	0	30	15	7	463,0	
	6	6	0	15	1	1011,7	
	7	0	30	5	1	663,5	
	8	6	30(+1)	15	7	779,2	
	9	3	15	10	4	757,6	
	10	3	15	10	4	759,0	
	11	3	15	10	4	766,9	
	12	0	7	7	5	Phase separation	
	13	0	7	7	10	Phase separation	
	Variance a In order to calculated a the coeffici variables h of droplet) adequately Moreover, between th The fitted influence o the study of phases, the droplets dia are conside confirms to response.	nalysis (o check to at 0.05. Re ent was s ave signif . The AN fitted the the coeffic e indeper model . ' f factors a of the influe e sonicati ameter. A ered signi hat the v	ANOVA). the significant significant ficant linea OVA resu e experime cients of d adent varia The coeffi and their i uence of th on and ag ccording t ficant whi variation f	cance of egression a (p value ar effect (p lts preser ental data leterminat ables and cients of interaction he percen gitation ti o the resu le the fact factors as	the diffe analysis p is less the value < ted in T as the la tion R^2 = the respond the mod tages of t mes as w lts report or b ₃ , b ₄ = well as	rent factors, the p value oresented in Table 2 revea an 0.05). In fact, all indep 0.05) (positive effect on d able 2, indicates that the ck of fit is insignificant (p 0.981 indicate a good corr nse $Y_{d3.2}$. el make it possible to stu- response. In this case stu- the continuous and the di- vell as their interactions are moderately significant their interactions influe	es were led that pendent iameter e model p>0.05). relation udy the ady, it is spersed on the p_0, b_1, b_2 t, which nce the

Table 2. Regression coefficients and analysis of variance (ANOVA) of the predictedmodel for the droplet size diameter.

			Y	d3.2 ($\mathbf{R}^2 = 0.9$)	81)				
terms	R	egression pefficient		Standard deviation	t value		Signification (%)		
b 0		724.10		1.51	478.94		***		
b 1		-129.85	1.77		-73.24		***		
b ₂		183.27	1.77		103.38		***		
b 3		25.30	1.77		14.27		**		
b 4		15.60	1.77		8.80		**		
Varia Sour	Variation Source Sum squa		·e	degree of freedom	mean squar	re	Fvalue	Signif	
Regres	ssion	4.10674E+00)05	4	1.02668E+0005		4083.3248	***	
Resid	ual 8.11427E+00		003 6		1.35238E+0003				
Valid	lity	8.06399E+00	003 4		2.01600E+0003		80.1802	*	
Err	or	5.02867E+00)01	2	2.51433E+00	001			
Tot	al	4.18788E+00)05	10					

(*, **;***) is the significance level at p<0.05 ; p<0.005 ; p<0.0005 respectively.

According to Table 2, and taking into consideration the statistically significant parameters (p value lower than .05), the predictive mathematical model representing the response is detailed in the following equation:

Y_{d3.2}= 724.10-129X1+183,27X2+25.30X3+15.60X4

with : X1 : stirring time

X2 : Sonication Time

X3 : Percentage of the dispersed phase

X4 : Percentage of the continuous phase

Model adequacy was confirmed through ANOVA which was checked by using Fisher-test. The Table 2 showed that the *F*-test value of regression coefficients is superior to the tabulated ($F_{regression} = >F_{tabulated}$ ($_{6, 4, 0.05}$)). The corresponding p value was inferior to 0.0001 which indicates that independent factors have a significant effect on droplet diameter size. Furthermore, results from Table 2 indicated that the lack-of-fit is insignificant ($F_{lack-of-fit} < F_{tabulated}$ ($_{4, 2, 0.05}$); p value of 0.05) which means that the model is valid.. Thus, it can be conclude that the emulsion diameter and PDI is mainly influenced by the percentage of the aqueous phase

Statistical validation of the fitted model. The graphical study of the residuals of the Y response shows that the distribution of the points of the experimental and calculated values of the studied model are distributed at random and there is no particular structure that emerges from the representation of the residuals. This again confirms that the model is valid.

Graph disper	a 2: <i>Va</i> sed ph	<i>riatio</i> ases p	<i>n of the</i> ercentag	response es	in the plane.	Vari	ed factor	s contir	ous and
The st encaps	udy of sulatio	desira n of th	bility the yme EO.	eoretically	provided Exp	erime	ent 14 as i	the opti	mum for
		N° Exp	•tpstpsDisplayxpagitatsonicatpe		Dispersed phase percentage	Di con	spersed phase 1positior	Emu perc	llsifier entage
Optimum		14	0 0 5		7	0%EO + 60% Oil		7%	
confir	med ex	$\frac{1}{\sqrt{1-Di}}$	entally a	nd the valu	nes obtained a	re as	follows	n aa	lent was
Exp	son	b b b	hase %	COL	nnosition	LIII	%	(nm)	PDI
14	-	P	5	70%E	70%EO + 30% Oil		7%	260	0,221
pnysic potent detaile	tial, co	nducti ellow:	ivity, refi	ractive in	meter, pH, vis lex) or biolo	gical	y, density (antioxid	ant act	ivity) as
			Experi	ment 14	result	s	Units		
			Vise	cosity					
			Refract	0,10± 0.	01	mPa/s			
				ion index	0,10±0. 1,35±0.	01 08	mPa/s -		
			l	ion index oH	$0,10\pm 0.$ $1,35\pm 0.$ $3,93\pm 0.$ $1.05\pm 0.$	01 08 23	mPa/s - -		
			l De	ion index pH nsity diamatar	$0,10 \pm 0.$ $1,35 \pm 0.$ $3,93 \pm 0.$ $1,05 \pm 0.$ $280.02 \pm 0.$	01 08 23 07	mPa/s - g.cm ⁻³		
			l De Droplet	ion index pH nsity diameter	$0,10 \pm 0.$ $1,35 \pm 0.$ $3,93 \pm 0.$ $1,05 \pm 0.$ $280,93 \pm 2.$ $0,26 \pm 0.$	01 08 23 07 1.52	mPa/s - g.cm ⁻³ nm		
			l De Droplet F Tur	ion index pH nsity diameter PDI bidity	$0,10 \pm 0.$ $1,35 \pm 0.$ $3,93 \pm 0.$ $1,05 \pm 0.$ $280,93 \pm 2.$ $0,26 \pm 0.$ $20.51 \pm 0.$	01 08 23 07 1.52 02 .95	mPa/s - g.cm ⁻³ nm -		
			l De Droplet F Tur Zeta P	ion index pH nsity diameter PDI bidity otential	$\begin{array}{c} 0,10 \pm 0. \\ 1,35 \pm 0. \\ 3,93 \pm 0. \\ 1,05 \pm 0. \\ 280,93 \pm 2 \\ 0,26 \pm 0. \\ 20.51 \pm 0 \\ -10,30 \pm 0 \end{array}$	01 08 23 07 1.52 02 .95 0.78	mPa/s - g.cm ⁻³ nm - - mV		
			Droplet Droplet Tur Zeta P Cond	ion index pH nsity diameter PDI bidity otential uctivity	$\begin{array}{c} 0,10 \pm 0. \\ 1,35 \pm 0. \\ 3,93 \pm 0. \\ 1,05 \pm 0. \\ 280,93 \pm 2. \\ 0,26 \pm 0. \\ 20.51 \pm 0. \\ -10,30 \pm 0. \\ 0,52 \pm 0. \end{array}$	01 08 23 07 1.52 02 .95 0.78 06	mPa/s - g.cm ⁻³ nm - - mV ms/cm		
			l Droplet F Tur Zeta P Condu	ion index pH nsity diameter PDI bidity otential uctivity	$\begin{array}{c} 0,10 \pm 0. \\ 1,35 \pm 0. \\ 3,93 \pm 0. \\ 1,05 \pm 0. \\ 280,93 \pm 2. \\ 0,26 \pm 0. \\ 20.51 \pm 0. \\ -10,30 \pm 0. \\ 0,52 \pm 0. \\ \end{array}$	01 08 23 07 1.52 02 .95 0.78 06	mPa/s - g.cm ⁻³ nm - - mV ms/cm		