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As a simple and clear illustration, only 
1000 points are shown in Figure 1. The re-
sult of this experiment is listed in Table 1 
to show the convergence of the approxima-
tion of π (pi) depending on the number of 
points generated by the MCS.

The results in Table 1, based on the ex-
emplary points shown in Figure 1, visual-
ize how a good approximation to the num-
ber π can be achieved statistically through 
experiments in MCS by a random and inde-
pendent arrangement of points. In addi-
tion, it can be shown that the higher the 
number of generated points, the better the 
approximation. The results from this series 
of simulations gradually converge to an ac-
curate solution of pi.

Example of Monte Carlo 
simulation

MCS is based on random numbers and thus 
on the application of a random number 
generator. As an example of a possible pro-
cedure for a normal distributed MCS, the 
polar method is presented below.

significant role in simulating the me-
chanical properties of composite pres-
sure vessels (CPV) such as burst strength 
[10, 11] or fatigue strength [12]. In the 
meantime, the acceptance rate of a prod-
uct population according to different ac-
ceptance criteria can be determined as 
well. Through MCS the minimum re-
quirements for standards and regulations 
are examined and the potential for im-
provement is elaborated [13]. 

MCS is based on statistics and probabil-
ity theory. To understand the results of 
these simulations, it is necessary to ex-
plain the approach step by step via a sim-
ple and comprehensible example. 

The principle of MCS can be demon-
strated by a simple experiment for ap-
proximating the value of the number π 
(“pi”). Figure 1 illustrates a unit square 
with an enclosed unit circle. The points in 
the diagram are generated by MCS in a 
random and independent manner. The 
number of points generated in the unit 
circle (PC) in relation to the number of 
points in the unit square (PS), will be 
close to the ratio of the corresponding ar-
eas AC and AS if the number of points is 
sufficiently large:

For over 10 years, the Federal Institute 
for Materials Research and Testing 
(BAM) has been developing and improv-
ing statistical methods for the probabilis-
tic approach (PA) to assess the safety of 
composite compressed gas storage sys-
tems [1], particularly with respect to 
their use for the storage of hydrogen. The 
PA developed [2-6] is based on sample 
testing and statistical assessment in com-
bination with reliability criteria. Monte 
Carlo simulation (MCS) [7, 8, 9] plays a 

The Monte Carlo method enables the statistical simulation 
of the mechanical properties of groups taken from a given 
population. In the case of composite pressure vessels used 
for hydrogen storage, properties like burst strength or  
fatigue cycle strength are of interest. This paper provides 
comprehensive information on how populations are gener-
ated and how samples can be taken and evaluated; it also 
explains how to determine the acceptance rate of random 
samples from simulated populations for passing the ap-
proval test “minimum burst pressure”. A word of caution  
is also expressed regarding the evaluation of acceptance 
rates from a small sample. 
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Figure 1: Approximation of pi via Monte Carlo 
simulation
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Polar method. The random MCS num-
bers are generated by a random number 
generator which is usually embedded in 
numeric software. As an example of nor-
mal distributed data generated by MSC, the 
polar method is explained below.

The polar method developed by Marsaga-
lia and Bray [14] is one of the possible 
methods to generate normal distributed 
random data. It serves as a random number 
generator for the required primitive data in 
a MCS. The polar method hearkens back to 
the Box-Muller algorithm for generating 
normal distributed random variables by us-
ing Euclidean coordinates. In the polar 
method random points in the plane are pro-
duced and are arranged approximately uni-
formly in an imaginary unit circle with ra-
dius r = 1. The coordinates for the points 
are generated from random numbers.

Generating random number
according to Figure 2

Step 1: In the polar method, according to 
section 5.2.1 in [1], two random numbers, 
Z1, Z2, for each simulated individual are 
generated independently by means of a 
random number generator in an interval of 
[0 … 1]. The data thus created are depicted 
as dots in Figure 3. 

Step 2: In the next step, the values of the 
coordinates in the unit circle u and v from 
the previously pairwise generated random 
numbers are determined according to the 
following equations:

u = 2 · Z1 – 1	 (2)

v = 2 · Z2 – 1	 (3)

In Step 3, values of the auxiliary quantity q 
for each individual i are calculated:

qi = u2 + v2 	  (4)

If numerical values for q are obtained, for 
which q = r > 1, these individuals must be 
excluded. The results for qi are shown in 
Figure 3.

In Step 4, values for the deviation meas-
ure x  of the normal distribution are calcu-
lated:

xi = u ⋅
−2 ⋅ lnqi

qi 	
(5)

This yields the data shown in Figure 4. 
Each point represents an individual or a 
property of an individual considered. The 
total set of points shows the entire gener-
ated population of individuals.

By applying the condition in Step 3, the 
numerical data of q, corresponding to the 

individuals i are excluded if they are out-
side the unit circle (q = r > 1). Unless re-
placement data are regenerated, the num-
ber of simulated individuals in the further 
calculation of the polar method decreases 
accordingly. 

Apart from using the polar method to 
generate the normal distributed properties 
of individuals, the “inverse function” of the 
normal distribution of customary programs 
can also be used in combination with a ran-
dom number generator. Figure 4 shows an 
example of a data cloud generated with Mi-
crosoft Excel (2016 MSO – Version 1803). 

Generating the population. In the fol-
lowing, the random numbers generated are 
used to simulate the burst strength property 
of a population of CPVs (composite pressure 

Total number of points PQ  
within square

Number of points PK 
within circle

PK/PQ acc. to 
Equation (1)

Approximation of figure π: 
4 (PK/PQ) 

10 9 0.9000 3.6000

100 87 0.8700 3.4800

1,000 806 0.80600 3.2240

4,000 3,195 0.79875 3.1950

10,000 7,899 0.78990 3.1596

50,000 39,269 0.78538 3.1415

Table 1: Approaching the value of the number pi by increasing the total number of random points

Figure 3: Polar method Step 3: sorting the parameter qi calculated from a 
pair of random number Z1i, Z2i Figure 4: Polar method Step 4: cloud of individuals with standard score xi

Figure 2: Overview of cal-
culation steps of polar 
method based on the unit 
circle with the radius 
r = 1
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vessels) used for storing hydrogen in vehi-
cles as a propellant or for transport. 

The properties of a population are de-
scribed in Figure 5 by the two normalized 
parameters of the burst strengths test re-
sults simulated by MCS: “mean strength 
Ωμ” and “standard deviation Ωσ”. The deter-
mination of the basic values Ωμ and Ωσ is 
necessary as the essential input for the ba-
sic population; to be combined with the 
standard score xi for generating properties 
of the population. More specifically, these 
central characteristics Ω of the total popula-
tion as well as the properties of samples 
used comparatively below are normalized to 
a maximum service pressure (MSP). By 
means of normalization, the relative burst 
strength and relative standard deviation are 
obtained, which can be used in a specially 
prepared, standardized working diagram. 

In order to obtain the burst strength ΩBi 
of an individual i, the generated standard 
score xi of an individual is combined with 
the defined properties of the total popula-
tion [6]:

ΩBi = Ωμ + xi · Ωσ	  (6)

The example used in the following is based 
on “mean” and “standard deviation” deter-
mined as:

Ωμ = 2.6 for mean burst pressure
Ωσ = 0.2 for standard deviation. 

Verification of the statistical distribution. 
Often, it is necessary to check, whether the 
expected distribution (here Gaussian nor-
mal distribution) is actually generated [16]. 

Pressure vessels are designed and manu
factured for a guaranteed minimum burst 
pressure. In fact, the real strength of burst 
pressure mainly varies due to material and 
manufacture reproducibility, so that it can 
never be statistically ruled out that the 
guaranteed minimum burst value of a few 
individuals may be lower than the accepted 
minimum requirement. 

The Gaussian probability net (see sec-
tion 3.2.1 from [1] and [17]), is often ap-
plied to check the normal distribution func-
tion for the data of ΩBi. 

Figure 6 shows a comparison between the 
strength data (points) generated and an ideal 
normal distribution (straight line) in a 
Gaussian probability net. Since all data scat-
ter closely around the straight line, there is 
no indication that the values generated are 
not distributed normally. The dashed line in 
Figure 6 represents the theoretical normal 
distribution. The gradient of the best fit or 
regression line describes the standard de-
viation of the normalized burst pressure of 

the population generated. An increase in 
the gradient of the best fit line indicates a 
reduction in standard deviation.

Generating the samples. To simulate 
the real scenario of compiling a sample, the 
CPVs must be drawn from a population. 
This can even be simulated via MCS. For 
this purpose, each randomly generated 
CPV is simulated as if “pulled” from the 
population. Each sample is collected ac-
cording to the given sample size, i. e. num-
ber of elements n in the sample, e. g. n = 3, 
5, 7, and then statistically evaluated. The 
sequence of “pulling single CPVs from pop-
ulation” can be done randomly or subse-
quently depending on the requirements of 
a real scenario. The process is shown in 
Figure 7 for the sample data selected with 
an extreme sample size of n = 3. The three 
individual values of the randomly selected 
CPV are each shown in Figure 7.

The number n of CPVs in a sample influ-
ences the deviation of a sample from the Ωμ 
and Ωσ determined. The larger the sample 
size, the less a sample usually deviates 
from its true value. This means that the 
more the area is narrowed down, the more 
confidently the results of the statistical as-
sessment can be achieved (see section 
3.4.1 from [1]). The absolute minimum of a 
sample size is n = 3 and is used as the sim-
plest example in the following to demon-
strate the principles of MCS. 

Evaluating the samples. In the next 
step, a classical acceptance criterion is 
added to the evaluation. For the relative 
burst pressure of each individual, a mini-
mum strength value of 2.3 times the maxi-
mum service pressure (MSP) is required. 
This corresponds to a minimum value of 
twice the test pressure for pressure recep-
tacles according to [15] as long as the max-
imum service pressure, which is here the 
gas pressure at 65 °C, does not exceed 85 % 
of the test pressure, as described for exam-

Figure 5: Polar method Step 5: relative burst pressure ΩBi of individuals 
for a population of 80 individuals Figure 6: Monte Carlo simulation of a normal distributed population 

sorted in a Gaussian probability net

Figure 7: Deterministic 
evaluation of the  

samples according to  
a minimum value of  

requirement
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ple for hydrogen. All individual strength 
values that meet the minimum require-
ment are shown as a grey spot in Figure 7 
(passed); individual values below the mini-
mum value are indicated as a hatched spot 
(failed). Each of these individuals has been 
randomised as a part of a sample. The as-
sociated mean values of each sample are 
indicated as a horizontal bar following a 
comparable indication system. The overall 
targeted average of 2.6 is added. In this 
way, the acceptance criteria for the burst 
test of different sets of rules can also be 
considered [11].

Figure 8 shows these results of sample 
testing in the sample performance chart 
(SPC) introduced in Section 3.1 from a 
previous publication [1] to demonstrate 
the quality of “burst strength”. The mean 
and standard deviation of the respective 
sample are calculated from the burst 
strength values of each of the 3 individual 
CPVs per sample. Thus, the sample prop-
erties simulated are represented by 
means of one mark in the diagram. Hence, 
from a total of 80 individuals generated, 
26 random samples of 3 individuals are 
evaluated. 

If all individuals of a sample meet this 
deterministic minimum value, according to 
Figure 7, each mark representing the en-
tire sample in Figure 8 is indicated as a di-
amond. If the sample contains one or more 
individuals that do not meet the minimum 
strength requirement, the sample is shown 
as a triangle. These failed samples have a 
relatively lower mean strength and exhibit 
a higher standard deviation. 

The acceptance rate is obtained if the ra-
tio of the number of blue dots (22 samples) 
in relation to the total number of samples 
(26) is calculated. The acceptance rate AR 
for the population simulated and exempla-

rily evaluated here (Ωσ = 0.2, Ωμ = 2.6) is 
AR = 85 %. As shown in [1, 11, 12], the ef-
fects of different acceptance criteria in 
terms of burst strength [8] and load cycle 
strength [12] according to various stand-
ards and regulations for the approval of 
CPVs have been presented.

Small sample effect on acceptance 
rate. The example demonstrated in this 
paper is based on a small number of sam-
ples (26) and an extremely small sample 
size (n = 3). It it clear that the use of a 
small number of samples for calculating 
the acceptance rate is a flaw, causing dis-
crepancies in the acceptance rate due to 
repeated identical MCSs.

The acceptance rates presented in Fig-
ure 9 as a bar graph are obtained from 
MCSs which were run five times separately 
with identical parameters. The acceptance 
rates vary from the lowest 56.3 % to the 
highest 71.3 % by evaluating 26 samples 
(78 CPVs for n = 3) with an assumed ac-
ceptance criterion of 250 % MSP. A maxi-
mum of 15 % deviation from the acceptance 
rate results of the simulations repeated five 
times using a small number of samples. 
This effect is less significant if the number 
of samples increases. The line in Figure 9 
shows a maximum difference of 1 % if the 
number of samples increases to 16,666 
(about 50,000 CPV for n = 3). 

Obviously the discrepancy in the ac-
ceptance rate in the MCS depends on the 
number of samples and the amount of ele-
ments per sample or the total number of 
selected CPVs when conducting a statisti-
cal assessment. A convergence study of 
the discrepancies in the acceptance rate 
depending on the number of samples has 
not been carried out here. However, a 
word of caution is expressed with respect 
to using samples to simulate and evaluate 

the effectiveness of standards and regula-
tions. It is important to check the quality 
of a series of manufactured pressure ves-
sels even with a small number of small 
samples rather than based on the results 
of a single test. 

Conclusions

The Monte Carlo simulation is a suitable 
method for obtaining strength properties 
such as burst strength and fatigue 
strength of composite pressure vessels. 
The simulation of pressure vessel popula-
tions and samples taken from these basic 
populations allows for an evaluation of 
the effectiveness of minimum require-
ments that would otherwise not be possi-
ble because of the extreme effort to carry 
them out. This in turn enables a system-
atic analysis of the way of taking effect of 
deterministic minimum requirements 
and the improvement of appropriate ap-
proval requirements. However, there is a 
particular effect of small samples which 
must be taken into account when evaluat-
ing test data.
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