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A B S T R A C T

The design of efficient energy systems, through the development of new technologies and the improvement
of current ones, requires the use of rigorous process synthesis methods for generating and analysing design
alternatives. We introduce a digital twin of process and energy system design that interactively translates needs
and preferences of decision makers into an optimization-based model and generates meaningful solutions.
The Interactive Digital Twin (InDiT) assists decision makers in steering the exploration of the solution space
and guiding them towards relevant system design decisions, taking into account multiple aspects such as
the impact of uncertainties and multi-criteria analysis. InDiT enhances step-by-step communication with the
decision maker, relying on visual aids to keep the communication during solution generation and exploration
intuitive and flexible. In this way, decision makers are guided towards relevant solutions and improve their
understanding of relations between the problem definition and system design decisions, while InDiT builds on
the decision makers’ preferences and can, after training, suggest solutions that are best-suited to their interests.
The novelty of this work lies in the holistic approach of addressing both (i) the systematic generation and
exploration of solutions with the assistance of a digital consultant, which translates the decision maker’s needs
into machine language and vice versa, and (ii) the interactive step-by-step technique on filtering and evaluating
solutions intuitively. This guarantees that the decision maker does not only get solutions based on the design
specifications made, but that personal preferences are taken into account during the solution synthesis step,
and that the solution space can easily be explored under different criteria. The proposed methodology is
demonstrated and applied to the design case of an integrated multi-product biorefinery.
1. Introduction

1.1. Motivation and state of the art

Climate change mitigation is one of the most pressing challenges
society is facing, revealing the need for efficient and reliable de-
sign methods of energy systems that are sustainable in economical,
environmental and social terms.

Process systems engineering (PSE) aims to define, design, plan and
control systems with physical, chemical or biological operations, such
as energy systems or chemical processes [1].

Process simulation. As described by Stephanopoulos and Reklaitis [2],
the first steps of PSE were dominated by process simulation and analy-
sis, relying on complex flowsheeting methods. In recent years, surrogate
models – which describe a complex system by a set of simplified but
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rather accurate equations – have been used as an alternative, espe-
cially in combination with complex and CPU-intensive optimization
problems [3,4].

Process synthesis. The emerging focus on quantitative descriptions of
processes and phenomena by means of simulation led to a more thor-
ough analysis of the system performance and on the ways to im-
prove it [5]. Following unit operations selection and interconnection
definition, process synthesis is applied for further development, sim-
ulation and optimization. Two main types of models are developed:
traditional sequential-conceptual models and systematic superstructure
optimization-based ones [3].

Sequential models/hierarchical decomposition. Sequential models/
hierarchical decomposition as proposed by Douglas [6] assume a natu-
ral hierarchy among engineering decisions made during the generation
of a chemical process flowsheet [3]. Such approaches have the potential
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Nomenclature

Abbreviations

CAPEX Capital expenditure
DM Decision maker
DME Dimethyl ether
FT Fischer Tropsch
GWP Global warming potential
IO Interactive optimization
KPI Key performance indicator
LHS Latin Hypercube Sampling
LHV Lower heating value
MADA Multi-attribute decision analysis
MeOH Methanol
MILP Mixed Integer Linear Programming
OPEX Operating expenditure
PSE Process system engineering
TOPSIS Technique for Order of Preference by Similarity

to Ideal Solution
TOTEX Total expenditure

Indices and sets

𝛩 ∈ 𝐃 Decision variables of upper level framework in
InDiT, defining bounds of lower level framework
decision variables

𝑗 ∈ 𝐊 Number of objectives considered in optimization
𝑙 ∈ 𝐋 Generated solutions
𝑚 ∈ 𝐌 Number of points on Pareto-front
𝑛 ∈ 𝐍 Formulations of the multi-objective optimization

problem used for solution generation with InDiT
𝑝𝑢 ∈ 𝐏 Parameters subjected to uncertainty
𝑡 ∈ 𝐓 System states
𝑢 ∈ 𝐔 Units considered in the superstructure

Parameters and variables

𝑐op1∕2𝑢 Specific fixed/variable operating cost of unit 𝑢,
calculated for reference size 𝑓mult = 1, [USD]

𝐶 inv
𝑢 Investment cost of unit 𝑢, [USD]

𝐶 Amount of carbon, [kg]
𝐸 Amount of electricity, [kWh]
𝜂en Energy efficiency, [–]
𝜂carbon Carbon efficiency, [–]
𝑓mult
𝑢 Unit sizing factor, [–]

𝐹min∕max
𝑢 Lower/Upper bound of unit sizing factor, [–]

𝐼𝑚𝑝𝑎𝑐𝑡 Global warming potential after IPCC2013,
[kg𝐶𝑂2𝑒𝑞/year]

𝑛/𝑖 Investment lifetime/Investment interest rate
𝑝payback Payback period, [years]
𝑡op𝑡 Operating time per time step 𝑡, [s]
𝑦use𝑢 Binary decision variable on unit installation , [–]
𝑦use𝑢,𝑡 Binary decision variable on unit usage at timestep

𝑡, [–]
𝑌𝑢 Bound on unit installation, indicates if unit is

considered, [–]
𝑧 Objective functions considered in optimization

to drastically reduce the complexity of the synthesis problem, but make
decision interactions difficult to integrate. Examples are the design of
particular sub-systems such as distillation-based separation systems, or
2

heat and mass exchanger networks [7,8]. Grossmann [9] added the as-
pect of system optimality and introduced a way of formally quantifying
a system’s configuration performance, which led to the second category
of models: superstructure optimization-based approaches.

Superstructure optimization. Superstructure optimization consists of
three steps: (i) definition of a network of all potential unit operations
and connections, including the set of all feasible alternative process
configurations, (ii) translation into a mathematical programming model
and (iii) result generation by solving an optimization problem [1].
Since this paper focuses on the solution generation and exploration,
the first is only mentioned here for completeness. The interested reader
may consult [1] for a detailed overview of developed superstructure
representations. Mixed Integer Programming is widely applied to en-
ergy and process system optimization, and the mathematical problem is
formulated either as a linear or a nonlinear problem [9], using discrete
and continuous decision variables, and one or multiple objectives.
Typically, discrete variables describe structural alternatives, whereas
continuous variables represent process conditions and equipment sizes.
To ensure useful results, the generation of a set of feasible alternatives
may be preferred to the generation of a single system design, which
may be optimal only under certain external conditions [10].

Multi-criteria decision analysis. The approach of multi-criteria decision
analysis is particularly relevant when one wants to analyze the trade-
off between conflicting objectives, for example through multi-objective
optimization, coupled with Pareto visualizations. Several methods exist
for creating a set of alternative solutions: Multi-objective optimization
is widely applied for analysing trade-offs between two or more ob-
jective functions. Applications of the method range from the design
of biomass conversion and biorefinery applications [11,12] to the
optimization of mass and energy networks in industrial processes [13,
14] and numerous applications in urban systems [15,16]. The pro-
cedure for obtaining solutions from a multi-objective optimization
formulation can be either of deterministic or of heuristic nature [17].
In heuristic-based methods, stochastic exploration of solutions is em-
ployed. The implementation is straightforward, but many iterations
may be needed to reach what is often only an approximation of the
Pareto-front [18]. Deterministic exploration guarantees Pareto-optimal
solutions. In that context, the multi-objective problem is converted into
multiple single objective functions by the application of parametrized
scalarization functions, enabling the use of common single-objective
solvers to explore the Pareto curve [19].

Another rigorous strategy to obtain alternative solutions is to cal-
culate near-optimal solutions using integer cuts [20]. This method pro-
duces different solutions for a single-objective problem by continuously
adding constraints on the integer variables, forbidding combinations
of binaries that were previously chosen [21]. The concept of near-
optimal solutions is particularly applied for the analysis of parameter
uncertainty [22], for long-term energy system planning [23] and for
characterizing properties of preferred solutions and correlations be-
tween optimizer decisions [24]. A general overview of optimization
strategies for obtaining solutions is provided by Liu et al. [25]. Once
a set of solutions is generated, each one can be characterized by a
series of performance indicators. Choosing among proposed solutions
requires multi-criteria decision analysis methods for screening solutions
and identifying the most attractive ones. A comprehensive review of
multi-criteria decision making methods is provided by Cajot et al. [26].

Interactive optimization. In recent years, interactive optimization (IO)
has gained interest of the research community, impelled by the incorpo-
ration of expert knowledge and experience in the optimization process
and solution exploration process, as well as intuition and personal
preferences [17,18]. As a consequence, computational efforts can be
significantly reduced, given that only the relevant space interesting to
the decision maker is explored [27]. Besides increasing the decision
maker’s confidence in the obtained results, the interaction process
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supports intuitive learning, without relying on a priori preference infor-
mation [18]. However, IO methods rely on the availability of a human
decision maker, their ability to devote time to the solution exploration,
and their capability to understand the demands of the IO [18,19]. Thus,
IO applications should be intuitive and flexible in adapting to the user’s
inputs [18].

Visualization is recognized as an important aspect of IO meth-
ods [17,18]. Parallel coordinates gained increasing attention in this re-
gard, as they allow for intuitive comparison of scenarios [28]. Abi Akle
et al. [29] approved their effectiveness in displaying multi-objective
optimization results compared to other visual aids for exploring solu-
tions, while Cajot et al. [18] applied them to multi-criteria decision
support for urban energy systems. Reviews of interactive optimization
and choices of visualization tools are provided by Branke et al. [19],
Miettinen [30].

Uncertainty consideration. With the aim of generating meaningful solu-
ions, the question of uncertainty in data availability certainly comes
o mind. Assumptions on which investment decisions for industrial
nergy system are based, such as the development of equipment and
esource cost, are often proven to be wrong retrospectively [31]. For
roviding assistance to informed decision making, it is crucial to take
he uncertainty of these assumptions into account. Multiple studies
ere conducted to assess the impact of uncertainties in energy system
esigns. The review by Soroudi and Amraee [32] presents the state
f the art in decision making under uncertainty applied to energy
ystems; a classification of different uncertainty handling methods is
iven, together with prospective advantages and disadvantages. Zhou
t al. [33] present a review of decision analysis methods handling
ncertainty. Uncertainty analysis is often embedded in the solution
eneration procedure via stochastic programming, generating solutions
ia a scenario-based approach. The encountered problems include the
se of probability distribution functions that need to be available
eforehand, as well as the problem size which quickly escalates and be-
omes untraceable [34]. As an alternative, robust optimization emerged
o deal with the issue of large amounts of uncertain parameters and
carcity of data, considering the worst-case scenario of the uncertainty
n the optimization problem [35].

.2. Identified gaps and research objectives

In our research, we address the efficient generation of meaningful
olutions for a decision maker by applying a digital twin concept to
he solution synthesis and exploration for energy system and process
esign. In this context, meaningful refers to the preferences the decision
aker expresses at any stage of the solution generation and synthesis.

Digital twins were originally proposed in the early 2000 and have
een mainly applied as an enabling technology for smart manufacturing
n industry for areas such as product design, production prognostics
r health management [36]. Definitions of the concept found in lit-
rature range from virtual representations of objects or systems that
nteract with the physical counterpart throughout its life cycle to the
eamless integration between cyber and physical systems based on
imulation, real-time data, machine learning and reasoning [36,37].
omprehensive reviews of digital twin definitions and applications
re provided in [36,38]. In our research, we transfer the concept of
digital twin onto the decision making process an engineer passes

hrough when designing a process and energy system. With the pro-
osed Interactive Digital Twin (InDiT) methodology, we aim to guide

a decision maker (DM) in multi-dimensional solution spaces based on
user-defined preferences, providing insights about typical unit choices
and sizes, correlations between user preferences and the solution space,
as well as trade-offs between competing decision criteria. Other than
the majority of computer-aided decision making approaches, our digital
twin does not only synthesize results based on the technical system in-
corporated in a simulation or mathematical programming formulation,
3

it moreover mirrors the whole decision process an engineer is passing
through, translating their needs into computer language and retrieving
relevant information.

Taking the DM’s preferences into account at different stages allows
for efficient solution generation, for adapting the search space if pref-
erences change, and for exploring the solution space under different
perspectives. The DM can explore solutions under varying criteria of
interest and can adapt the search space of the optimization for solu-
tion generation accordingly. By coupling the visually-assisted solution
exploration with a rigorous solution generation step relying on mathe-
matical programming and optimization, we ensure generated solutions
to be Pareto-optimal in a certain decision space. Tackling uncertainty
in economic parameters at various steps of the solution generation and
exploration, we allow for the analysis of solution performance under
different economic conditions.

Our aim is not to provide the DM with one optimal solution, but
to rather suggest a methodology that enables a fast and comprehensive
exploration of the solution space of a complex system engineering prob-
lem, like in our case an integrated biorefinery pulp mill superstructure.
The results proposed by InDiT mirror the DM’s preferences and allow to
analyze under which external criteria the generated decisions hold. To
the knowledge of the authors, there is no comprehensive methodology
that includes an interactive and adaptable solution generation explo-
ration, taking DM input such as uncertainty distribution at different
stages into account.

2. Methodology

2.1. Problem statement and overview of the proposed methodology

Our Interactive Digital Twin InDiT assists the generation and ex-
ploration of meaningful solutions for a given process synthesis super-
structure, letting the DM influence the decision making at different
stages of the process by translating their needs into computer language
and steering the solution synthesis in the required direction. InDiT’s
worklflow consists of three main parts:

• Superstructure formulation
• Solution synthesis

– Decision space exploration
– Problem formulation
– Solution generation

• Solution exploration and steering of result generation

The simplified workflow of the InDiT algorithm is presented in
Fig. 1. The first step, namely the superstructure formulation, considers
the system design as a list of units that need to be selected, sized
and connected to realize a system functionality under user-predefined
conditions and objectives. The developed superstructure contains all
considered units and possible connections between them. Based on
steering inputs specified by the DM (shown as green boxes in Fig. 1),
InDiT explores the decision space and defines a set of problems to be
solved. Systematic solution generation strategies are followed by a com-
prehensive exploration and assessment of the generated results with
regards to the system performance indicators. The solution exploration
identifies solutions that are most promising and meaningful to the DM,
and proposes steering actions on how to enrich the list of relevant
solutions.

2.2. Superstructure formulation

The process superstructure describes the system’s units and the
way they can interact with others. By activating certain units and
their connections, different system configurations are generated. For

using the superstructure for the generation of solutions and evaluating
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Fig. 1. Simplified flowchart of proposed methodology InDiT for the synthesis and exploration of solutions for superstructure optimization.
them based on economical, thermodynamic and environmental per-
formance, the model needs to be developed in a systematic manner.
The superstructure model encompasses two dimensions: the mass and
energy conversion in the units and their integration in the system. The
methodology for superstructure modeling and optimization is adapted
from Gassner and Maréchal [11] and Kantor et al. [39]. From now
on, it is referred to as the lower level framework in a upper/lower
level structure, where the lower level framework generates results for
optimization problems and is controlled by the upper level framework
InDiT, where optimization problems are imposed, the results of the
salve framework are evaluated and the generation of new results is
steered.

The synthesis of configurations from the superstructure includes
the manipulation of the decision variables by an optimizer. Decision
variables of the lower level framework are of two types: they are
either binary (installation/usage of a given unit 𝑦use𝑢 , 𝑦use𝑢,𝑡 ) or continuous
(size/capacity factor of unit 𝑓mult

𝑢 , 𝑓mult
𝑢,𝑡 ). For a problem communi-

cated by the upper level framework InDiT, the lower level framework
generates a solution and reports it back to InDiT. In the lower level
framework, the decision variables for a solution are fixed solving a
mixed-integer linear programming (MILP) problem formulated in the
AMPL optimization language [40], using the CPLEX branch-and-bound
algorithm [41]. Fig. 2 shows the simplified structure of the lower level
framework, including the superstructure description and the solution
evaluation for each problem formulated by InDiT. Further information
on the mathematical formulation of the superstructure model applied
in the lower level framework can be found in Appendix.

2.3. Solution synthesis

The solution synthesis of InDiT consists of the definition of steering
inputs, the exploration of the decision space, the problem formulation
and the generation of solutions using the lower level framework. It is
followed by the exploration of the solutions (Fig. 3).

2.3.1. Definition of steering inputs
The aim of defining steering inputs for InDiT is to capture the DM’s

preferences and needs, and to translate them into framework conditions
useable for solution synthesis.

Bounds of the decision variables and uncertainty in parameters. Firstly,
𝐷 relevant variables of the upper level framework that influence the
decision space of the lower level framework are identified, containing
the bounds of the continuous (𝑥) and discrete (𝑦) decision variables
of the lower level framework. The discrete decision variables of the
upper level framework 𝛩𝑦 set the upper bound 𝑌𝑢 ≥ 𝑦use𝑢 of the
installation of independent units in the lower level framework and
therefore determine whether a unit can be considered for solution
generation. The continuous decision variables 𝛩𝑥 contain the upper
bounds of the unit multiplication factor 𝐹max

𝑢 ≥ 𝑓mult
𝑢 for independent

units. Independent in that sense implies that the unit size is not directly
correlated to the size or operation of another unit. Furthermore, lower
level framework parameters 𝑝𝑢 that are subjected to uncertainty, such
as the equipment lifetime or the electricity price, are identified with
4

their ranges of variation.
Objectives and key performance indicators:. Objectives 𝑧 that should be
evaluated by the lower level framework are identified, as well as user-
defined key performance indicators. The difference between objectives
and key performance indicators (KPIs) is that objectives are used to
steer the lower level framework optimization (e.g. minimizing the total
system cost), whereas a KPI is an indicator of special interest for a
DM (e.g. share of energy from renewables). As we are using an MILP
formulation in our lower level framework, the objectives have to be of
linear nature, while KPIs can include nonlinear relations as well, since
they are computed a posteriori. Objectives and KPIs can be competing
with one another.

2.3.2. Decision space exploration
The aim of the exploration of the decision space is to enhance the

generation of a variety of valid solutions by the lower level framework.
For this purpose, samples are drawn from the identified upper level
decision variables 𝛩. Furthermore, the parameters 𝑝𝑢 for which an
uncertainty range has been identified are sampled within an identified
distribution. Latin Hypercube Sampling (LHS) is applied. This stratified
sampling technique splits the range of each input variable into intervals
of equal probability, and each of the intervals is sampled once [43]. The
sampling of the decision variable bounds and of the uncertain parame-
ters leads to a set of 𝑁 formulations of a multi-objective optimization
problem, consisting of 𝑃 uncertain parameters and 𝐷 decision variable
bounds of the lower level framework.

2.3.3. Problem formulation
The problem definition step corresponds to the translation of the

decision space characteristics, containing objectives, decision variable
bounds and uncertainty parameters into optimization problems solved
by the lower level framework. The MILP problem on the lower level
framework that is characterized by the inputs of the upper level frame-
work for each problem can be summarized as follows:

min 𝑧(𝑥, 𝑦, 𝑝)

subject to
𝑔(𝑥, 𝑦, 𝑝) ≤ 0

ℎ(𝑥, 𝑦, 𝑝) = 0

𝛩𝑥,min ≤ 𝑥 ≤ 𝛩𝑥,max, 𝛩𝑥 ∈ 𝑅𝐷

𝛩𝑦,min ≤ 𝑦 ≤ 𝛩𝑦,max, 𝛩𝑦 ∈ 𝑅𝐷.

(1)

𝑧(𝑥, 𝑦, 𝑝) ∈ 𝑅𝐾 contains the 𝐾 objective functions that are to minimize,
𝑥, 𝑦 are the continuous and discrete decision variables of the lower level
framework, 𝑝 the parameters, 𝑔(𝑥, 𝑦) define the inequality constraints,
and ℎ(𝑥, 𝑦) the equality constraints, while 𝛩 defines the bounds of the
decision variables imposed by InDiT.

Optimization approach. We choose to evaluate our defined problem
for each sample by applying a deterministic optimization procedure,
as it guarantees Pareto-optimal solutions with fewer iterations than
with heuristic methods. This requires the transformation of the multi-
objective problem formulation of Eq. (1) into parametrized single ob-
jectives.
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Fig. 2. Lower level optimization approach, integrated in InDiT, adapted from [11,42].
Fig. 3. Proposed methodology InDiT for the synthesis and exploration of solutions for superstructure optimization. The solution exploration is specified further in Fig. 5.
Scalarization function. For transforming the problem into a single-
objective formulation, we apply an adapted form of the 𝜀-constraint
method, first introduced by Haimes et al. [44] and adapted by Mavrotas
[45] and Cajot et al. [18].

Compared to other common methods such as the weighted sum
method, the 𝜀-constraint method is able to handle convex as well as
non-convex Pareto-fronts, does not suffer from counter-intuitive weight
specification and the variation of the parametrized constraints leads to
a richer and more diverse set of solutions [18,19,45,46].

When applying the 𝜀-constraint method, only one objective 𝑘 is
minimized and the others 𝑗 are transformed into inequality constraints
characterized by an upper bound 𝜀:

min𝑥,𝑦 𝑧𝑘(𝑥, 𝑦, 𝑝)

subject to
𝑧𝑗 (𝑥, 𝑦, 𝑝) ≤ 𝜀𝑚,𝑗 , 𝑗 = 1,… , 𝐾 − 1, 𝑗 ≠ 𝑘,

𝑔(𝑥, 𝑦, 𝑝) ≤ 0

ℎ(𝑥, 𝑦, 𝑝) = 0

(2)

where 𝑘 ∈ 1....𝐾, 𝑚 = 1....𝑀 , 𝑀 being the total number of points on the
Pareto-front.

Payoff table calculation. The range of each parametrized objective func-
tion in which the upper bounds 𝜀 can be varied needs to be identified
5

when applying the 𝜀-constraint method. In the original 𝜀-constraint
approach, this is done by calculating the individual optima of each
objective function. However, this may lead to weak Pareto-optimal
points in case of multiple alternative solutions [45]. In our approach,
the payoff table between the different identified objectives and thus
the ranges of the 𝜀-constraint are calculated applying an augmented
𝜀-constraint method as suggested by Mavrotas [45], considering lexi-
cographic optimization. The objective with highest priority to the DM
is optimized obtaining 𝑚𝑖𝑛(𝑧1) = 𝑧∗1. The second function is optimized
after adding the constraint 𝑧1 ≤ 𝑧∗1, and 𝑚𝑖𝑛(𝑧2) = 𝑧∗2 is obtained. Both
constraints 𝑧1 = 𝑧∗1, and 𝑧2 = 𝑧∗2 are added as constraints for optimizing
𝑧3, until all objective functions are treated. This guarantees that all
the payoff table is built with only Pareto-optimal solutions, therefore
excluding weak Pareto-optimal ones (Fig. 4B, see dominated 𝜀 bounds).

Sampling of 𝜀-constraints:. After the non-dominated payoff table is cal-
culated, a sampling algorithm is applied to define 𝑀 bounds for the
parametrized objective functions 𝑧𝑗 .

Burhenne et al. [47] compared different sampling algorithms and
concluded that the Sobol approach [48] provides a robust and effi-
cient exploitation of the search space. The approach has also been
explored by Copado-Méndez et al. [49] and Cajot et al. [18]. Sobol
sequence sampling compared to systematic sampling is illustrated in
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Fig. 4A, where the exploration of the search space in a 𝑘−dimensional
optimization problem is shown, proving the superiority of the former.
Compared to systematic sampling, it obtains a faster representation of
the Pareto-front.

In this work, as our aim is to allow for flexible and efficient explo-
ration of the solution space for multiple objective functions, we apply
Sobol sampling to create parametrized constraints 𝜀𝑚,𝑗 for generating
solutions.

2.3.4. Solution generation
For each of the 𝑁×𝑀 samples of 𝛩, 𝑝𝑢 and 𝜀, the model is evaluated

and solutions are generated in a deterministic way using the lower level
framework. We ensure that generated solutions are better than a bench-
mark set of solutions generated for the least-favourable set of economic
parameters in 𝑝𝑢 under relaxed conditions for the decision bounds 𝛩.
Thus, the generated benchmark solutions are the optimal ones for the
worst possible economic scenario. For this purpose, we determine the
least-favourable set of economic condition when trying to minimize
total cost. This means that if the correlation between total cost and
the parameter 𝑝𝑢,𝑖 is 1, the parameter is set to its maximum, and if the
correlation is -1, it is set to its minimum in the distribution sampled
before. For example, increasing the cost of natural gas increases the
total cost, so the former is set to its maximum. For selling price of a
product, the correlation is reversed, so all cost for sold products are set
to their minimum. For the resulting set of least-favourable economic
parameters, we calculate the range of the 𝜀-constraints. The decision
maker can define a tolerance range with which obtained results can ex-
ceed the calculated ranges in the economic worst case, relaxed scenario.
For each sample 𝑛, InDiT will check if the calculated payoff table is
fulfilling the criteria of being in the defined tolerance. This means that
when minimizing objective 𝑗 for the payoff table calculation as a single-
objective optimization problem, the result needs to be beyond a defined
threshold for the same objective obtained in the worst case relaxed
scenario. If for a sample 𝑛 any of the single objective optimizations in
the payoff table definition are accepted, the sample is considered for
further solution generation. If all single objective optimizations perform
worse than the defined relaxed economic worst case, the sample is
discarded (demonstrated for two objectives in Fig. 4B).

In order to avoid the evaluation of infeasible sets of 𝜀, an early exit
mechanism is implemented in line with what was suggested by Mavro-
tas [45]. This is notably important when more than one objective is
subjected to an 𝜀-constraint, as some propositions of constraints might
be infeasible. Assuming all objectives are to be minimized, if the eval-
uation of the 𝑚th 𝜀 sample is infeasible, it is added to a set of infeasible
samples. For each new sample, the closest infeasible sample is chosen
based on the distance between the 𝜀 of the first constrained objective
and the respective 𝜀 in infeasible samples. Then, if any of the other 𝜀s
of the sample is smaller than the respective epsilon of the infeasible
sample, the evaluation is discarded. For example, let our optimization
contain three objective functions, leading to an 𝜀-constraint formulation
of parametrized functions 𝑧(𝑥, 𝑦)1 ≤ 𝜀1 and 𝑧(𝑥, 𝑦)2 ≤ 𝜀2. If now our
closest set of infeasible 𝜀-constraints is 𝜀𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = [𝜀∗1 , 𝜀

∗
2], for which

we know that 𝜀∗1 ≥ 𝜀1 and if 𝜀∗2 ≥ 𝜀2, the sample must be infeasible as
well and is thus not evaluated, but instead added to the set of infeasible
samples.

2.4. Solution exploration

The described algorithm leads to a set of 𝐿 solutions, each being
part of a Pareto-front for a set 𝑛 of model parameters. For analysing the
solutions and enable informed decision making, methods for systemati-
cally ranking and visualizing the solutions based on desired criteria are
coupled with DM input that steers the decision support in the desired
direction. The proposed workflow for exploring solutions with InDiT
is illustrated in Fig. 5. On the left side, the flow of the algorithm
6

is illustrated, while on the right side the individual steps included
are summarized. Trapezoidal boxes indicate a filtering step in which
the selected solutions are reduced by some criteria, while squared
boxes represent data processing performed for further analysis. All steps
included in the exploration aim at guiding the DM towards a relevant
subset of solutions. The steps can be repeated for different steering
criteria and DM inputs for comparing results.

The main concepts of each step are presented in the following
paragraphs. Details on the implementation can be found in Appendix.

2.4.1. Filtering solutions based on decision maker’s preference
One way to analyze solutions is to visualize trade-offs of the desired

objectives and KPIs in Pareto-fronts. This is particularly interesting
when one wants to balance solutions based on competing objectives,
such as for example investment cost and expenses for operation. Fur-
thermore, the solutions can be ranked based on objectives and KPIs,
as it was done by Celebi et al. [50]. In our approach, we enable the
evaluation of solutions based on a variety of KPIs and objectives that
the DM might be interested in. As the consideration of multiple criteria
can result in a complex and nontransparent set of data that is difficult to
display in table format, we chose graphical representation to allow for a
first overview of the solution space. In a first filtering, unique solutions
are identified by grouping all solutions 𝐿 on optimizer decisions. For
each unique solution, the occurrence is calculated based on how often
the optimizer chooses the respective configuration. All unique solutions
are displayed in parallel coordinates, which allows for comprehensive
analysis of the trade-offs between different process pathways. In paral-
lel coordinates, negative correlations are displayed via crossing lines,
while synergies are indicated by non-crossing lines [18,51,52]. Colour
indication and other visual encoding such as line-style can be used to
display characteristics of the data. In this first graphical representation,
we show the user-defined KPIs as well as the objectives in one single
plot. At this point, the DM has the option to refine the selection
of solutions by manipulating the visualization tool. Brushing an axes
leads to the display of the solutions within the desired range [53,54].
Dismissing axes enables the DM to solely focus on KPIs of interest,
preventing unnecessary distraction information [18]. The DM also
has the option to display the underlying optimizer decisions in the
parallel coordinates. After the first user-defined filtering of solutions,
the solution space 𝐿 is reduced to 𝐿∗ ≤ 𝐿.

2.4.2. Evaluation of operating robustness of solutions
After reducing the solution space based on DM preferences, the

robustness under varying economic conditions of the remaining solu-
tions is analyzed. Several studies [24,31,55] have noted how modeling
work is subjected to uncertainty in the input assumptions, and that bad
premises will lead to bad results, no matter how well-defined a model
is. The previously calculated occurrence of a solution in the solution
space is only a proxy of performance under different economic scenar-
ios, provided solution generation also takes different 𝜀-constraints and
decision spaces into account. To prevent misjudgements from results
which are weak as in their performance does not hold under variations
in economic parameters, a detailed uncertainty analysis is included,
which can be completely steered by the DM. In the first steering
input, the DM has already defined the parameters deemed uncertain
(𝑝𝑢), as well as the ranges in which they vary in order to generate a
diverse set of solutions. For this purpose, near-random distribution of
parameters is assumed per default in InDiT, ensuring even exploration
of the decision space. In the second steering input used for solution
exploration under uncertainty, probability distributions functions 𝑓 (𝑝𝑢)
need to be defined. For a given distribution of 𝑝𝑢, InDiT re-calculates
the resulting distribution of the economic KPIs per solution. This distri-
bution can be used to derive insights on how well a solution performs
under different economic scenarios. For quantifying this performance,
we enable the visualization of the obtained distribution with a user-
defined percentile and the mean of the obtained distributions. Per

default, we include the 95% percentile of the recalculated KPIs to be
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Fig. 4. A: Systematic vs Sobol sampling of Pareto-front. Comparison of systematic (red) to Sobol (blue) sampling approach for performing 𝜀- constraint method minimizing 2
objectives. 𝜀𝑚𝑖𝑛∕𝑚𝑎𝑥 are the bounds of the parametrized function 𝑧𝑘, 𝑧1 is the main objective, adapted from [18] B: Acceptance criteria for payoff table calculation. Non-dominated,
worst economic scenario payoff table including decision maker’s tolerance illustrated in black, dominated payoff table in grey. Sample 𝑛1 , 𝑛3 are accepted and evaluated using
epsilon bounds, 𝑛2 is discarded after calculation of payoff table.
Fig. 5. Solution exploration in InDiT.
displayed in the parallel coordinates. Another visualization aiding-tool
is the display of economic trade-offs in a Pareto-front, including the
calculated distributions and the original data. That way, the DM can
identify solutions that are Pareto-optimal for a desired percentile of the
calculated distribution, and can also judge the impact of uncertainty
on the economic KPIs. It is also possible to perform multiple analyses
with the generated solutions, and compare the preferred ones with and
without uncertainty.

2.4.3. Ranking solutions based on robustness and performance
Even though parallel coordinates facilitate the analysis of the solu-

tion space compared to tables, the multitude of KPIs and objectives to
be considered still leads to a rich and complex decision space which is
hard to capture in parallel coordinates. For this reason, we suggest to
include a ranking mechanism for the performance of a solution a DM
might be interested in. Solutions can be ranked based on a multitude
of methods. For example, for each KPI of interest, solutions can be
ranked on their best value, and a global ranking can be computed
based on a desired weight of each of the relevant KPIs and objectives.
Such aggregative multi-attribute decision analysis (MADA) methods
7

are widely used in research and industry to rank solutions based on
a defined metric of performance [18]. In our MADA approach, each
unique solution is attributed with a score that supposed to draw the
decision maker’s focus on a limited number of information, not to
replace all information gained form the rich display in parallel coor-
dinates [18]. According to [18], most MADA approaches are based
on the assumption that evaluation criteria can compensate each other.
Therefore, we apply the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) method, which ranks each solution based
on its proximity to an ideal solution and a worst solution. The ideal
solution is characterized by the best value in every criterion, and the
worst solution by the worst values of all criteria [56,57]. The TOPSIS
method results in a ranking of solutions between 0 and 1, which can
be added as an axis to the parallel coordinates plot. For applying
TOPSIS, the DM needs to define the ranking criteria and associated
weights as well as information about benefit or cost of each criteria
to qualify the solutions with. These criteria can include not only the
objectives and the KPIs, but also other solution properties, such as
the size of a certain unit, the level of autonomy of the system, or the
attributed occurrence. The occurrence of a unique solution can be seen
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as a relative measure for how stable the respective set of decisions
is, namely, how often it is selected for different decision spaces and
economic scenarios. One key aspect of TOPSIS is that the evaluation
criteria and their respective weights can be defined after the first set of
solutions is generated, and distinct scores can be calculated based on
different criteria that one might consider as important. After getting a
better overview of the quality of the generated solutions with regard
to the selected evaluation criteria, the DM can safely exclude some
solutions that are uninteresting in their current purpose and receive
a solution set 𝐿∗∗ ≤ 𝐿∗ ≤ 𝐿.

.4.4. Diversification of solutions
Once all remaining solutions are ranked based on user-defined

riteria, the question remains on how to chose the most promising
nes. Apart from user-specific ranking criteria and performance under
ncertainty, the richness of the solution space can be interesting to the
M. Having a final set of solutions that perform identically regarding

he ranking and robustness measures, but are diverse in optimizer
ecisions, allows to choose one final solution based on more ‘‘soft’’
riteria, such as the current market situation (purchasing prices) or
ther subjective demands. Clustering solutions in groups with similar
haracteristics is a common approach to select configurations from a
arge set of solutions [58,59]. The solutions in 𝐿∗∗ are clustered on the

optimizer decisions, so that clusters of similar solutions are generated.
K-medoids was used for clustering; it leverages on its robustness and
relies on the existing dataset for representative solutions [60], unlike
similar algorithms such as k-means. In addition, despite the higher
computational effort, the suggested representative solutions are nec-
essarily feasible, which might not be the case for the virtual cluster
centroids calculated with k-means. For determining the optimal number
of clusters, the elbow method [61] is employed. Principal component
analysis is used for translating the optimizer decisions and the resulting
clusters into 2 dimensions that can easily be visualized. For each of the
clusters, the best solution – taking the user-defined rank into account
– is chosen and added to the pool of final solutions 𝐿∗∗∗. That way,
the DM can be sure to have a diverse solution space that contains the
preferred solutions considering their personal evaluation criteria (see
Fig. 6).

2.4.5. Understanding solution dynamics and refining the search
The remaining question is whether the solution space is sufficiently

investigated, or the decision space needs to re-sampled for creating
additional relevant solutions. For this purpose, it is necessary to under-
stand how the optimizer decisions are influenced by choices expressed
in the steering inputs, and how the desired KPIs are influenced by
the optimizer decisions. Questions to be addressed in this stage of the
algorithm are: Is our solution space explored sufficiently, or might
there be other solutions interesting for the DM that have not yet been
created? What decisions are always taken in the selected solutions,
regardless of the steering parameters? Which decisions influence the
KPIs the most, especially the ones interesting to the DM? Where do we
need to re-sample if we want to create more meaningful solutions?

So, more general, the questions asked here are addressing the corre-
lations between KPIs and decisions characterizing a solution. Answering
them can reveal insights not only regarding the present solutions and
their typical characteristics, but also help understanding the dynamic
of solution generation and how one can influence it for generating
more attractive solutions. Furthermore, the analysis of correlations also
enables to decide which unit decisions are not influential or, simi-
larly, that are always chosen at a constant size, revealing non-binding
constraints for a selected KPI (see Fig. 6).

For validating the completeness of the solutions space and exploring
KPI-specific characteristics, we propose to analyze which constraints
are active, e.g. which constraints trigger changes in KPIs. We calculate
the correlation matrix for the user-defined aggregated KPI and the op-
8

timizer decisions. Continuous decisions (unit choices) with the highest
correlation are displayed in a bar graph, where the observed range
of the decisions in all generated solutions 𝐿 is shown, as well as the
range of decisions present in the selected subset of solutions, 𝐿∗∗∗. This
enables the decision maker to limit the decision space only to the ranges
of interest for the selected solutions. If it is found that the whole range
between the upper and lower bound for a unit size is used, it is advised
to increase the bounds and relax the constraint in the steering input, if
physically possible. On the other hand, if only a certain range or only
one point is used for the selected solutions, the bounds can be changed
to narrow down the range the lower level framework has to explore for
generating solutions.

After it has been decided that the solution space is explored suf-
ficiently, the solutions 𝐿∗∗∗ are displayed in parallel coordinates, so
that the decision maker can make its final choice. By evaluating the
performance of the different solutions regarding desired KPIs, the final
decision might be evident. If it is not evident, the DM can take other
subjective factors into account.

2.4.6. Summary of the proposed methodology on exploring solutions
The methodology proposed is not supposed to replace a human

DM, but rather to suggest and objectively (quantitatively) support the
decision making process. The steps in the exploration of solutions allow
for the efficient analysis of different aspects of embedded solution
characteristics, simultaneously using the generated information for
filtering. In this regard, InDiT serves as a translator and consultant
between the computer-generated results and the information the DM
needs for the decision process. Even though InDiT might not lead to
one clearly dominating solution, it ensures that the final set of solutions
are all within the accepted range of what the DM seeks, so they can
focus their decision purely on personal preference, without worrying
about meaningful information that might be hidden in the data without
being considered. The analysis is enhanced by the option of including
economic uncertainty and by the fact that the DM has the option to
evaluate the same solution pool under different criteria and to assess
trade-offs.

3. Application and results

The proposed methodology is intended for decision support in com-
plex, multi-dimensional superstructure optimization problems, where
the direct prioritization of preferences before solution generation is
challenging to realize. It is intended for setting a framework of ac-
ceptable solutions at the beginning, and then exploring the generated
results under different criteria. In that regard, we want to show that the
method can be used to explore results assuming different perspectives.
In our case study, we apply the proposed methodology of solution
generation and exploration to the design of an integrated biorefinery
pulp mill for the combined production of heat and fuel. Integrated
multi-product biorefineries have been modelled and analyzed exten-
sively in literature applying the above-described concepts of process
system synthesis and optimization [50,62–65], also in relation to pulp
mills [66–72]. However, to the knowledge of the author, available
work does not follow interactive optimization approaches involving
the DM actively in the decision process, but rather aims at presenting
solutions for a given superstructure and optimization objectives. Fur-
thermore, no study was found in that domain where solution generation
and exploration is combined, allowing for the exploration of a solution
space under different perspectives.

3.1. Process superstructure development

Biofuels represent an attractive low-carbon alternative for energy
demands in sectors that can hardly be electrified, such as aviation or
freight transportation. The pulp and paper industry is one of the largest
energy consumers of the European industrial sector [73]. Integrating

biorefinery concepts in an existing mill enables the plant to improve
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Fig. 6. A: Clusters based on decisions in selected solutions. Final solutions chosen in each cluster based on user KPI, displayed for decision space reduced to 2 dimensions. B: Bar
plots of decisions (unit sizes) with highest correlations to user KPI. Grey: all solutions, Green, final solutions after clustering.
its resource and energy efficiency, while building a diverse and robust
product portfolio of biofuels and pulp that can be provided to the
market. Most of the European pulp and paper mills process wood as the
basic raw material, which mainly consists of cellulose, hemicellulose
and lignin [74]. In Fig. 7, a simplified block flow diagram of a generic
Kraft process is presented. Wood is chopped, steamed and screened and
fed into a cooking unit (digester), where cellulosic fibres are removed
with the help of cooking chemicals [42]. The pulp exiting the digester
is screened, bleached and dried. The weak black liquor that is exiting
the digester is fed through a recovery unit consisting of an evaporator,
a concentrator and a recovery boiler. The concentrator yields black
liquor with a dry solid content of 75%, which is burnt in the recovery
boiler. That way, the energy content of the burnt organic materials
is recovered to run turbo-generators and to satisfy steam demands of
the mill. Furthermore, inorganic substances are recovered as chemical
pulping agents together with other by-products [42]. Inorganic residues
form a smelt consisting of sodium carbonate (𝑁𝑎2𝐶𝑂3) and sodium
sulphide (𝑁𝑎2𝑆), which is further used to produce green liquor. Green
liquor is passed through a causticizing process where it is transformed
to white liquor, consisting of sodium hydroxide (𝑁𝑎𝑂𝐻) and 𝑁𝑎2𝑆.
White liquor is then reused in the digesting process. Even though
recovery boilers have proven over the last decades to be a relatively
mature and reliable technology to process spent cooking liquors and
produce steam and electricity for process use, the pulp and paper
industry has been exploring alternatives [74]. The two main residue
streams considered for fuel production are bark and black liquor. For
the bark stream, dry gasification, with different fuel synthesis steps at
the end is considered in the superstructure development. For adjusting
the hydrogen to carbon monoxide (𝐻2∕𝐶𝑂) ratio to the desired fuel
synthesis, a water gas shift unit is included. The black liquor can –
instead of being sent to the recovery boiler – be used in hydrothermal
gasification for the generation of hydrogen. After gasification, different
gas cleaning options, namely Pressure Swing Adsorption (PSA), phys-
ical absorption (Selexol) coupled with PSA and chemical absorption
(Monoethanolamine, MEA) coupled with PSA are included. The puri-
fied hydrogen can then be used for adjusting the producer gas 𝐻2∕𝐶𝑂
ratio. Three types of fuel can be generated, namely Fischer–Tropsch
(FT) fuels, methanol (MeOH) and Dimethyl ether (DME). Optional
units for increasing the hydrogen production and/ or de-bottlenecking
the process are water or brine electrolysis yielding hydrogen, and co-
electrolysis yielding producer gas that also needs adjustment regarding
the 𝐻2∕𝐶𝑂 ratio. When integrating biorefinery concepts, dark blue
processes in Fig. 7 remain unchanged, as a constant production rate of
pulp is assumed. However, the flows of black liquor and bark will be
treated in alternative processes; consequently the energy requirements
of the evaporator, concentrator, recovery and bark boilers are due to
change. Furthermore, the load on the chemical recovery and the lime
kiln is dependent on the amount of recovered cooking chemicals and
will therefore be influenced, as the light blue units in Fig. 7 indicate.
Thus, limitations to integrate biofuel production from bark and black
9

liquor are the undisturbed operation of the pulp production, with no
penalization on the performance, the supply of the heat demand of
the pulp production, and the recovery of the cooking chemicals in an
appropriate form.

The process models of the biorefinery units are built using Belsim
Vali, a flowsheeting software [75] and integrated into the lower level
framework, together with the pulp mill unit models. The reader is
referred to Table 4 in the Appendix for more information on the
modeling references and assumptions for the described superstructure.

3.2. Solution synthesis

3.2.1. Definition of steering inputs
Bounds of decision variables. Table 1 provide an overview of the de-
cision variables inherent to each unit, where the unit multiplication
factor 𝑓mult and the upper bound 𝐹max of the lower level framework
optimization are given. If 𝐹max is given as a range, it means that the
maximum size of the particular unit is sampled in the steering input 1,
so 𝐹max is part of the 𝐷 decision variables of the upper level framework,
𝛩, to generate a variety of results. The same applies for 𝑌𝑢 that decides
the particular unit is considered (1) in the model or not (0). While some
units are always considered, 𝑌𝑢 is varied in the steering input for others,
in order to make the solution space more diverse. The lower bound
of the unit sizes 𝐹min is set to zero. Table 1 summarizes the decision
variables of our case study. For generating a wide set of results, 𝐹max

ranges are varied for two of the independent process unit decisions in
feasible domains for unit sizes.

Economic parameters subjected to uncertainty. For our case study of an
integrated pulp mill biorefinery, we choose the economic parameters in
Table 2 to be subjected to uncertainty. 𝐶 inv

𝑢 refers to the investment cost
of a certain unit. For demonstrating the method, we assume variation
of 10% from the reference cost for all equipment parameters. However,
for future analyses, other user-defined variations might be applied,
inspiration in this regard can come from [76,77]. Investment cost for
all units are taken from nonlinear correlations provided by [76,78,79].
Operating cost are taken from various sources listed in Table 2. For
the distribution of the operating cost, references in literature suggest
different shapes such as normal or beta [55]. However, in order to
avoid bias from strong assumed distributions, we chose to sample all
distributions as random uniform in the ranges given in steering input
1, Table 2.

Key performance indicators. Economic and environmental criteria are
chosen to evaluate system configurations. As described in Section 2.3,
they are not intended to be used as objectives for generating solutions,
but rather for comparing generated solutions based on competing
criteria of interest for the decision maker.

OPEX: For the calculation of the operating costs, c𝑜𝑝1𝑢 represents
𝑜𝑝2
specific fixed annual operating costs and c𝑢 accounts for the specific
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Fig. 7. Simplified block flow diagram of Kraft process with integrated biorefinery. Dark blue units are considered a constant size and operation, whereas light blue units change
their load depending on the integration characteristics with the biorefinery (green).
Table 1
Relevant decision variables of the lower level framework optimization and steering inputs of the upper level framework. For
each unit in the superstructure presented in Fig. 7, the multiplication factor 𝑓mult with which the reference size is multiplied
is given, as well as the upper bound 𝐹max and the discrete parameter 𝑌𝑢 that decides whether a unit is considered in the
solution generation. If ranges are given for 𝐹max and 𝑌𝑢, it means that these variables are included in the decision variables
of the upper level framework 𝛩 and are sampled for generating a rich solution space.
Unit 𝑓mult 𝐹max Reference size 𝑓mult= 1 𝑌𝑢
Pretreatment, gasification gas cleaning m_pretreatment 2 1 kg/s bark 1
Water gas shift m_wgs 0–2 1 kg/s producer gas 1
MeOH fuel synthesis m_meoh 5 1 kg/s producer gas 0/1
DME synthesis m_dme 5 1 kg/s producer gas 0/1
FT fuel synthesis m_ft_syn 5 1 kg/s producer gas 0/1
Pretreatment, gasification m_chtg 20 1 kg/s black liquor 0/1
PSA m_psa 7 1 kg/s producer gas 1
MEA & PSA m_mea_psa 7 1 kg/s producer gas 1
Selexol & PSA m_sel 7 1 kg/s producer gas 1
Mixer m_mixer 2 1 kg/s producer gas 1
Brine electrolysis m_br_elec 850 0.0005 kg/s hydrogen 0/1
Alkaline electrolysis m_alk_elec 75 0.00534188 kg/s hydrogen 0/1
Co-electrolysis m_co_elec 0.5 3 kg/s producer gas 0/1
Cogeneration m_opx1 – 1 kg/s producer gas 0/1
Gas burner 1 m_burn1 – 1 kg/s producer gas 0/1
Gas burner 2 m_burn_pg – 1 kg/s producer gas in 0/1
Lime Kiln m_lime_kiln – 1 kg/s quicklime out 1
Off gas burner lime kiln m_burn_lk_og – 1 kg/s offgas in 1
Natural gas burner lime kiln m_burn_lk_gas – 1 kg/s natural gas in 1
Recausticizing m_recaust 1 2.16 quicklime in 1
Evaporator & concentrator m_evap_conc 65 1 kg/s weak black liquor 1
Recovery boiler m_boiler_rec 15 1 kg/s concentrated black liquor 1
Bark boiler m_boiler_bark 0–2 1 kg/s bark 0/1
Fig. 8. Unique solutions are displayed in parallel coordinates. Each line represents one solution displayed on multiple axes that can be configuration characteristics, KPIs or
objectives. The colour is set by ‘‘group_id’’, which indicates the group of unique solutions.
10
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Fig. 9. Original and recalculated cost for 2 samples in 𝑁 , showing the 95 percentile on the left and the 75 percentile on the right. For sample A, the parameters the optimizer
used for generating results are in the mean of the CAPEX, but too optimistic for OPEX. For sample B, the current distributions are more in line with the original parameters used.
Table 2
Economic parameters used for sampling in steering input 1 and 2. Sampling refers to the distribution used in the exploration
step (steering input 2). In steering input 1, all parameters are assumed to be quasi-randomly distributed following LHS.
Parameter Price Unit Steering input 1 Steering input 2 Reference

MIN MAX Sampling

𝐶 inv 𝐶 inv
𝑢 USD 0.9 ⋅𝐶 inv

𝑢 1.1 ⋅𝐶 inv
𝑢 Uniform [76,78]

Interest rate 0.06 % 0.05 0.08 Uniform
Lifetime 25 years 23 28 Uniform
Wood price 0.0925 1kg 0.0833 0.1018 Uniform [80]
Electricity price 0.1016 1 kWh 0.0915 0.1118 Uniform [81]
Nat gas price 0.0256 USD/kWh 0.0230 0.0282 Uniform [82]
CO2 tax 0.0490 USD/kg CO2eq 0.0441 0.0539 Uniform [83]
FT fuel price −1.1080 USD/kg −1.2188 −0.9972 Uniform [84]
MeOH price −0.3900 USD/kg −0.4290 −0.3510 Uniform [85]
DME price −0.8280 USD/kg −0.9108 −0.7452 Uniform [86]
Hydrogen price 2.5000 USD/kg 2.2500 2.7500 Uniform [87]
variable annual operating costs that are dependent on the size and the
utilization of the unit 𝑦use𝑢,𝑡 .

OPEX =
𝐔
∑

𝑢

𝐓
∑

𝑡=1
(𝑐op1𝑢 ⋅ 𝑦use𝑢,𝑡 + 𝑐op2𝑢 ⋅ 𝑓mult

𝑢,𝑡 ) ⋅ 𝑡𝑜𝑝𝑡 (3)

CAPEX: This indicator includes costs associated with the purchase
and installation of new equipment 𝐶 inv, derived from [76,78]. Invest-
ment costs are updated to the current year using the CEPCI index of
2019 and annualized over the expected lifetime of the equipment 𝑛𝑢
with the interest rate 𝑖".

CAPEX𝑢 =
𝑖(1 + 𝑖)𝑛𝑢

(1 + 𝑖)𝑛𝑢 − 1
⋅ 𝐶 inv

𝑢

CAPEX =
∑

CAPEX𝑢
(4)
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𝑢

Total Costs: The total annual cost is the sum of OPEX and CAPEX,
providing an indication of the plant’s profitability.

Payback period: The payback period 𝑝payback relates the OPEX and
the investment cost made. It needs to be noted that we only include
the investment cost related to the biorefinery units in the calculation,
and we only consider the fuel selling revenues and resource that can
directly be allocated to the fuel production as operating cost.

𝑝payback =
∑

𝑢 𝐶
inv
𝑢

𝑂𝑃𝐸𝑋bio
(5)

Environmental indicators: In this study, our environmental impact
analysis is realized using the Ecoinvent 3.6 database [88] including
data on Global Warming Potential (GWP) in [kgCO2𝑒𝑞/year] from IPCC
2013. However, any other indicator can be chosen as well. Further
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impact-related KPIs we consider are the amount of carbon and energy
stored in the fuel, as well as the total fossil emissions of the mill.

Resilience indicators: We identify KPIs that describe the resilience of
proposed plant configuration. As a measure of resilience, we consider

he plant’s self sufficiency regarding electricity (𝐸) 𝜂𝐸,𝑠𝑒𝑙𝑓 and fuel
consumption 𝜂𝐹 ,𝑠𝑒𝑙𝑓 , measured with the amount of carbon (𝐶) in the
fuel generated and bought.

𝜂E,self = 𝐸consume −
𝐸buy

𝐸consume

𝜂𝐹 ,𝑠𝑒𝑙𝑓 = 𝐶fuel,generate −
𝐶fuel,buy

𝐶fuel,generate

(6)

System efficiencies: The energetic efficiency 𝜂en is an indication of
the energetic conversion performance of biomass into liquid fuels. It is
calculated using the lower heating values (𝐿𝐻𝑉 ) of fuels and biomass
and the respective mass flows 𝑚, as well as the amount of electricity
being sold or bought. The carbon conversion efficiency 𝜂carbon is defined
as the ratio of carbon leaving the system stored in value-added products
and the carbon entering with the inputs.

𝜂en =
𝑚 ⋅ 𝐿𝐻𝑉 fuel + 𝐸sell

𝑚 ⋅ 𝐿𝐻𝑉 biomass,in + 𝐸buy

𝜂carbon =
𝐶pulp + 𝐶fuel,generate

𝐶pulpwood,in

(7)

3.2.2. Decision space exploration, problem formulation and solution gener-
ation

As described in the methodology, the economic parameters sub-
jected to uncertainty 𝑝𝑢 and the decision variables of the upper level
framework 𝛩 are sampled in the steering input 1. 𝑁 = 20 samples
are generated in a first step, avoiding taking too much computational
time. For each sample 𝑛 ∈ 𝑁 , a set of Pareto-optimal solutions is
generated. In our case study, two objectives are explored by the lower
level framework optimization, OPEX and CAPEX. The relaxed solutions
of the worst economic scenario are computed and a tolerance of 20%
is accepted, meaning that samples are only used for the calculation
of the Pareto-front if the payoff tables are better than 20% of the
worst solutions achieved. For each payoff table qualifying for further
evaluation, six Pareto points are calculated using Sobol sampling for
generation of the 𝜀 bounds. According to the criteria defined above, 17
of the 20 payoff tables qualify for further evaluation, leading to a total
of 182 function evaluations. The reduced MIP dimensions for a typical
problem to be evaluated during the solution generation are 3180 rows,
19374 columns, and 76264 non-zeros. Each function evaluation takes
approximately 32 seconds (s), which results in a solution generation
time of 97 minutes (min).

3.3. Solution exploration

From the solution generation defined in the previous section, 138
feasible unique solutions are retrieved, satisfying the demand of per-
forming better than the solutions of the worst economic scenario.
Following the procedure presented in Fig. 5, all unique solutions are
displayed in parallel coordinates (see Fig. 8). For better illustrating the
suggested method, we follow the steps of the solution exploration from
2 different DM perspectives and compare the solutions.

3.3.1. Filtering user preferences and analysing uncertainty
Both DMs have no strong preference towards a certain trend in

the solutions before analysing the performance under uncertainty; thus
all unique solutions are included in the uncertainty calculation. Fig. 9
shows the changes in economic performance for the generated Pareto-
front for two samples in 𝑁 with 75% and 95% percentiles. Depending
on the assumed distribution, the solutions perform better or worse
economically than in the original optimization result. As a reminder,
12

the economic parameters were also sampled during the generation of
Fig. 10. Cluster results for both DMs, clustering based on optimizer decisions using
K-medoids. Best performing solution based on user rank calculations. A: Clusters for DM
1, 138 unique solutions included. B: Clusters for DM 2, 124 unique solutions included.

Table 3
Decision maker specifications for ranking calculation and resulting user rank ranges.

TOPSIS specifications User rank

Indices Weights Direction min max

DM 1 TOTEX mean 1/3 −1
𝜂E,self 1/3 1
𝜂Carbon 1/3 1 0.169 0.845

DM 2 TOTEX 95% 1/2 −1
Payback time 1/2 −1 0.335 0.667

solutions for obtaining a diverse solution space. By showing the impact
of the economic uncertainty in their solutions to the DMs, they can
decide to either take them into account with a given percentile, or to
ignore them. In our case study, the impact of the economic uncertainty
for the assumed distribution is judged to be quite remarkable by both
DMs. Therefore, both include the updated cost in their ranking. DM 1
includes the mean of the updated TOTEX, while DM 2 includes the 95
percentile. Furthermore, the DM 2 discards all solutions with a mean
CAPEX above 15 million USD (MUSD), which leaves him with 124
remaining unique solutions.

3.3.2. Ranking and diversification
For ranking, DM 1 includes mean TOTEX, the carbon efficiency

and the self sufficiency of the mill in user rank calculation, all equally
weighted. This leads to a user rank between 0.17 and 0.84 for all unique
solutions. DM 2 is only interested in TOTEX and payback time, for
both the 95 percentile is included, which leads to a user rank between
0.34 and 0.67 (see Table 3). The direction indicates whether a criteria
included in TOPSIS should be interpreted as a benefit or as cost.
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Clustering the unique solution based on optimizer’s decisions leads
o five diverse solutions for DM 1, each being the best performing
olution based on user rank 1 in the respective cluster. For DM 2 who
reviously discarded some unique solutions, we get 4 clusters and thus
diverse solutions. Fig. 10 displays the generated clusters for both DMs

educed in a two-dimensional space.
For the two solutions sets, the relevant KPIs and user ranks as well as

he fuel production are presented in Fig. 12. The associated optimizer’s
ecisions are given in Table 7 in Appendix.

It is noticeable that DM 1 only receives final solutions with fuel pro-
uction included. Three solutions include FT fuel production, whereas
ME and MeOH is picked once each. The three solutions generating
T fuel (cluster 1–3) are differentiated by the method of setting the
roducer gas ratio to the required one for fuel synthesis (hydrogen
roduction or water gas shift), the origin of the producer gas (dry
asification and co-electrolysis), the valorization of produced hydrogen
used in mixer or in cogeneration) and the gas cleaning mechanisms for
ydrogen (Selexol and PSA). The solutions yielding DME and MeOH
se both the dry gasification, whereas in the case of DME production,
he producer gas ratio is adapted using water gas shift, whereas in
he solution yielding MeOH, Alkaline electrolysis additionally used
o support the adjustment. The solutions proposed to DM 2 are less
iverse regarding the fuel production. Apart from a solution valorizing
esiduals in the conventional way, FT fuel is produced in three other
olutions. When producing FT fuel, the producer gas ratio is adjusted
y varying shares of hydrothermal gasification and water gas shift. The
olutions proposed to both DMs are visualized in Fig. 11, where the
mult of the major units is included for the selected solutions.

.3.3. Steering the solution space
The most relevant decisions influencing the calculated user rank are

isualized in a polar plot (Fig. 13). Out of the twenty-five possible units
o install, three are never chosen and therefore not included in the
epresentation. Particularly influencing the user rank 1 is the size of
he water gas shift unit, as well as the recovery boiler, the pretreatment
nd hydrothermal gasification unit for black liquor. For the solution
et 2, the most influencing decisions are the size of the water gas shift
nit, the FT synthesis and the gas burner 2. Looking at the bar plots
f the decision space exploration in Fig. 13. For both DM 1 and 2, it
ould be interesting to investigate if the size of the bark treating units,
.g. the dry gasification pretreatment, the bark boiler and the water
as shift unit could be increased, if more bark is made available. All
nique solutions as well as the selected solution for DM 1 and 2 reach
13
he bound set to this units which is imposed by the limited amount
f bark available in the mill. Adding the option of buying more bark
r generating less pulp could generate more interesting results to both
Ms. Furthermore, DM 1 should investigate the option of sending more
lack liquor to hydrothermal gasification, as m_chtg reaches its upper
ound for both solution sets. The upper bound in this variable is mainly
et due to the feasible unit sizes, however, installing units in parallel
ould be an option. The recovery boiler is also exploited up to it’s
aximum capacity for the solutions presented to DM 2. However, this

s related to the fact that the recovery boiler is already installed and the
aximum capacity displayed is the capacity that is currently installed.
hus, reaching the limit in this case simply means that all black liquor

s valorized in the bark boiler. If DM 2 wishes to generate more
eaningful solutions, they should investigate the additional purchase

f bark, or the option of valorizing more woody biomass in the dry
asification line at the trade-off of less pulp production. Regarding the
lready generated solution, DM 1 should settle for solution of cluster 1
r 2 regarding the user rank. Looking at the original KPIs determining
he user rank, cluster 2 is slightly better and should thus be preferred.
ccording to the user rank, DM 2 should settle for the solution of cluster
where no biorefinery units are installed. The next best solution from

here is solution of cluster 2, generating FT fuel by gasifying bark.

. Discussion

Limitations of the methodology concern the exclusive use of inde-
endent optimizer decisions for steering and determining the complete-
ess of the solution space, as the correlation between units can bias
he displayed information. In this work, this was addressed by only
llowing for the sampling and the exploration of unrelated unit sizes.
owever, knowledge about the unit relations prior to the application
f the method is inevitable. For improving this method, sensitivity
nalysis prior to unit size sampling in the solution generation might be
dequate. Another limitation of this work is the absence of uncertainty
n the impact factors underlying the analysis. We assumed distribu-
ion of economic parameters, but including a similar concept to the
nvironmental assumptions might lead to different results as well. Fur-
hermore, more ranking parameters could be included for guiding the
Ms. Nevertheless, our method has proven to enable a comprehensive

olution generation exploration for complex optimization problems.
he solution space can be explored for a variety of DM preferences
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Fig. 12. User rank, involved key performance indicators and annual fuel production displayed for both DMs. Top: DM 1, Bottom: DM 2.
Fig. 13. A: DM 1, B: DM 2. Spider plots represent the correlation between the optimizer decisions and the user rank, bar plots show the exploitation of the decision space in all
unique solutions and the ones selected in the final step.
and specifications, including uncertainty considerations. The step-by-
step propagation of the method allows the decision maker to follow
the process of solution filtering and to iterate through different steps
multiple times to adjust his preferences according to the retrieved
results. The practice of visualizing each step gives guidance and makes
the process intuitive to understand.
14
5. Conclusion

The present work addresses the challenge of decision support in
complex superstructure optimization by adding a digital twin (InDiT)
that consults the decision maker during the solution synthesis and
exploration and serves as a translator between human and machine.
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𝑡)

𝑚

The aim hereby is to enable the selection of results not only based on
the technical description an engineer provides, but rather to include
the decision maker’s choices expressed at any time during the pro-
cess, and thus to provide solutions that respect the decision maker’s
needs. After defining a superstructure of interest, the steps followed
are the definition of steering inputs to capture initial user preferences
and the exploration of the decision space, followed by the problem
formulation and the solution synthesis. In the solution exploration,
a multi-stage filtering is employed, considering user preferences re-
garding Key Performance Indicators and optimizer decisions, as well
as the performance under uncertainty and the diversity of the final
solution sets. Furthermore, a steering proposition is provided by the
digital twin that suggests how further relevant solutions could be
generated. The method was applied for generating solutions for the
integration of biorefinery concepts in a typical Kraft pulp mill. Solutions
were investigated for two decision maker specifications. In both cases,
multiple solutions of comparable performance regarding the decision
maker’s preferences were retrieved, all of them portraying different
system configurations. Furthermore, InDiT was able to suggest how to
generate more meaningful solutions. It was shown that the solutions
proposed by InDiT are in line with the expressed preferences, and
that the suggested method allows for strategic solution generation
and holistic exploration of complex optimization problems. We believe
that our concept of introducing a digital twin that mirrors the whole
decision making process of an engineer and actively communicates
with its human counterpart could help the decision making in many
complex engineering applications, enabling a holistic understanding of
the solution space and the impact of expressed preferences.

CRediT authorship contribution statement

Julia Granacher: Conceptualization, Methodology, Software, Data
curation, Formal analysis, Investigation, Validation, Visualization, Writ-
ing – original draft, Review & editing. Tuong-Van Nguyen: Con-
ceptualization, Methodology, Validation, Writing – review & editing,
Supervision. Rafael Castro-Amoedo: Conceptualization, Validation,
Writing – review & editing. François Maréchal: Supervision, Writing
– review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.The authors declare that the
research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Acknowledgements

The authors would like to thank David Yang Shu for his constructive
comments during the synthesis of the presented methodology.

Funding

This research has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement
No 818011 and under the Marie Skłodowska-Curie grant agreements
No 754462 and 754354.

Appendix A. Supplementary material on the methodology
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Supplementary information on the mathematical formulation of the super-
structure model

The methodology for superstructure modeling and optimization is
adapted from Gassner and Maréchal [11],Kantor et al. [39]. For each
unit 𝑢 in the system, energy and mass flow models are built to describe
the conversion of process streams and physical properties, as well as
to obtain the characteristics of the interfaces offered for integration
with other units. Depending on the type of unit, flowsheeting models
are developed to derive the mass and energy balances of the system.
Assuming a set of possible units U and a set of possible system states T,
binary decision variables 𝑦use𝑢 and 𝑦use𝑢,𝑡 describe, respectively, whether
a unit 𝑢 is installed, and whether it is used in the respective period t.
Continuous decision variables 𝑓mult

𝑢 and 𝑓mult
𝑢,𝑡 describe the installed size

of the unit and the level of usage at which it is operated in each period
t, respectively. 𝑓mult

𝑢 and 𝑓mult
𝑢,𝑡 are constrained by parametrized upper

and lower bounds: 𝐹min∕max
𝑢 . The binaries 𝑦use𝑢 and 𝑦use𝑢,𝑡 are constrained

by the bound 𝑌𝑢 that determines whether a unit is considered for the
generation of results. In the superstructure model, those variables are
related by the following set of equations (Eq. (8)).

𝐹min
𝑢 ⋅ 𝑦use𝑢 ≤ 𝑓mult

𝑢 ≤ 𝐹max
𝑢 ⋅ 𝑦use𝑢 ∀ 𝑢 ∈ U

𝐹min
𝑢 ⋅ 𝑦use𝑢,𝑡 ≤ 𝑓mult

𝑢,𝑡 ≤ 𝐹max
𝑢 ⋅ 𝑦use𝑢,𝑡 ∀ 𝑢 ∈ U, 𝑡 ∈ T

𝑌𝑢 ≥𝑦use𝑢 ≥ 𝑦use𝑢,𝑡 ∀ 𝑢 ∈ U, 𝑡 ∈ T
(8)

Material and energy flow balances are also used to define the unit’s
requirements. 𝑚̇+

𝑟,𝑢,𝑡 and 𝑚̇−
𝑟,𝑢,𝑡 define the reference mass flowrate of

resource 𝑟 produced and consumed, respectively, in unit 𝑢 at time step
𝑡. Requirements for each resource are satisfied by inside production and
imports (Eq. (9)). The overall resource balance ensures that import,
export and production are balanced, as formulated in Eq. (10).

The mass balance for each resource layer is closed with the amount
of resource 𝑟 consumed/supplied to the system in time step 𝑡 (𝑀̇−

𝑟,𝑗,𝑡/𝑀̇
+
𝑟,𝑖,

and balanced by internal needs and connection flowrates of resource 𝑟
between supplying unit 𝑖 (𝐒𝐔) and consuming unit 𝑗 (𝐂𝐔) given by
̇ 𝑟,𝑖,𝑗,𝑡 (Eqs. (12) and (13)).

∑

𝑢
𝑓mult
𝑢,𝑡 ⋅ 𝑚̇+

𝑟,𝑢,𝑡 + 𝑀̇−
𝑟,𝑡 −

𝑛𝑢
∑

𝑢=1
𝑓mult
𝑢 ⋅ 𝑚̇−

𝑟,𝑢,𝑡 ≥ 0, ∀𝑟 ∈ 𝐑,∀𝑡 ∈ 𝐓 (9)

𝑛𝑢
∑

𝑢=1
𝑓mult
𝑢,𝑡 ⋅ 𝑚̇+

𝑟,𝑢,𝑡 + 𝑀̇−
𝑟,𝑡 − 𝑀̇+

𝑟,𝑡 −
𝑛𝑢
∑

𝑢=1
𝑓mult
𝑢,𝑡 ⋅ 𝑚̇−

𝑟,𝑢,𝑡 = 0, ∀𝑟 ∈ 𝐑,∀𝑡 ∈ 𝐓 (10)

0 =
∑

𝑟
𝑓mult
𝑢,𝑡 ⋅ (𝑚̇+

𝑟,𝑢,𝑡 − ⋅𝑚̇−
𝑟,𝑢,𝑡), ∀𝑢 ∈ 𝐔,∀𝑡 ∈ 𝐓 (11)

𝑀̇−
𝑟,𝑗,𝑡 +

𝑛𝑖
∑

𝑖=1
𝑚̇𝑟,𝑖,𝑗,𝑡 = 𝑓mult

𝑗,𝑡 ⋅ 𝑚̇−
𝑟,𝑗,𝑡 ∀𝑟 ∈ 𝐑,∀𝑗 ∈ 𝐂𝐔,∀𝑡 ∈ 𝐓 (12)

𝑀̇+
𝑟,𝑖,𝑡 = 𝑓mult

𝑖,𝑡 ⋅ 𝑚̇+
𝑟,𝑖,𝑡 −

𝑛𝑗
∑

𝑗=1
𝑚̇𝑟,𝑖,𝑗,𝑡 ∀𝑟 ∈ 𝐑,∀𝑖 ∈ 𝐒𝐔,∀𝑡 ∈ 𝐓 (13)

In our approach, all units are connected to a heat exchange system,
which allows for the exchange of heat between processes and an
external utility system. This ensures that the energy demand is satisfied
and that the temperature-enthalpy profile of each unit is considered.
Minimum energy requirements are calculated applying the approach
presented by Maréchal and Kalitventzeff [111] and based on the work
of Linnhoff and Hindmarsh [8]. The energy balance is closed in each
temperature interval ℎ (Eq. (14)) and residual heat (𝑅̇𝑡,ℎ) flows from
higher (ℎ) to lower (ℎ−1) temperature (𝜃) levels. Following thermody-
namic feasibility, cascaded heat flows are positive, while values in both

the first and the last interval ℎ are zero (Eq. (15)). 𝑞̇𝑢,𝑡,ℎ represents the
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Table 4
Model parameters and references used in the superstructure. For each unit (bold), main references are given, as well as the main modeling assumptions.

Modeling assumptions Value Reference

Pulp mill model [13,89]

pulp production 1000 adt1/day
black liquor stream 14.89 kg/s
bark stream available from debarking of wood 67 MW/2000 adt pulp

Lime kiln and chemical recovery [90–93]

calcination temp 900◦ C
kiln product temperature 300◦ C
reburn specific heat 989 J/kg/K
𝐶𝑂2 specific heat 919 J/kg/K
heat of calcination 3270 kJ/kg
inerts specific heat 1046 J/kg/K
availability 85%
𝑁𝑎2𝐶𝑂3 in smelt 278.3 g/kg dry solids in black liquor

Alkaline water electrolysis (AEC) [94]

water inlet 0.0799 kg/s
hydrogen production 0.069 kg/s
oxygen production 0.17 kg/s
electricity input 1000 kWh
system efficiency 52 kWe/kg 𝐻2

Co-electrolyis [95]

water inlet 1.5335 kg/s
𝐶𝑂2 input 2.64 kg/s
syngas produced 3.01098 kg/s
oxygen co-produced 1.16254 kg/s
electricity input 18336 kg/s

Brine electrolysis [94,96]

water inlet to dilute brine 0.93 kg/s
𝑁𝑎𝐶𝑜3 input 0.093 kg/s
𝑁𝑎𝑂𝐻 output 0.019 kg/s
𝑁𝑎𝐶𝑜3 output 0.065 kg/s
electricity input 1000 kg/s
hydrogen production 0.0005 kg/s

Pretreatment and gasification of black liquor

Hydrolysis [63,70,97]
lignin fraction in organic biomass 94 wt%𝑑𝑎𝑓

a

H/C-ratio of lignin 1.11 mol𝑑𝑎𝑓
O/C-ratio of lignin 0.33 mol𝑑𝑎𝑓
effective water content 93 wt%
Decomposition of carboxylic salts [63,70,97,98]
reactor yield 70%
Salt separator [63,70,97,99–101]
recovery of inorganic cooking chemicals 100%
organic loss in salt brine 10%
Gasification and expansion [63,97,102]
reactor temperature 700◦ C
reactor pressure 250 bar
gas expander isentropic efficiency 80%
liquid expander isentropic efficiency 82%

Pressure Swing Adsorption (PSA) [103,104]

recovery rate 𝐻2 52%
𝐻2 purity 99.996 mol%
number of beds 4

Selexol and PSA [63,68,105,106]

recovery rate 𝐶𝑂2 Selexol 4%
recovery rate 𝐻2 Selexol 100%
recovery rate 𝐻2 PSA 80%
number of beds PSA 6
𝐻2 purity 99.99+ mol%

Monoethanolamine (MEA) and PSA [68,107]

recovery 𝐶𝑂2 MEA 5
recovery 𝐻2 PSA 80
number of beds PSA 6
𝐻2 purity 99.99+ mol%

Pretreatment of bark, gasification, gas cleaning,WGS, fuel synthesis [12,107–110]

drying technology steam drying

(continued on next page)
16
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Table 4 (continued).
Modeling assumptions Value Reference

Pulp mill model [13,89]

moisture content after drying 10%
gasification technology Directly heated entrained flow (EF)
operating conditions of gasification 1350 ◦C, 30 bar
cold gas cleaning temperature 150 ◦C
WGS temperature 300 ◦C
𝐶𝑂2 removal MEA
FT synthesis 25 bar, 220 ◦C
DME synthesis 50 bar, 277 ◦C
MeOH synthesis 85 bar, 315 ◦C
upgrading FT/DME/MeOH private data/ distillation /distillation

adaf: dry ash-free
reference heat load for unit 𝑢 in time step 𝑡 and temperature interval ℎ.
∀ℎ ∈ 𝐇 with 𝜃ℎ+1 ≥ 𝜃ℎ

𝑛𝑢

𝑢=1
𝑞̇𝑢,𝑡,ℎ ⋅ 𝑓

mult
𝑢,𝑡 + 𝑅̇𝑡,ℎ+1 − 𝑅̇𝑡,ℎ = 0 ∀𝑡 ∈ 𝐓 (14)

̇ 𝑡,ℎ ≥ 0, 𝑅̇𝑡,1 = 𝑅̇𝑡,𝑛ℎ+1 = 0 ∀𝑡 ∈ 𝐓 (15)

Chemical reactions are included in the respective units by calling
imulation software to provide reaction characteristics and the corre-
ponding energy and mass flows. For the economic analysis, the oper-
ting and investment costs are calculated as a function of equipment
ize, using cost functions available in literature. For the environmental
ssessment, the LCI (Life Cycle Inventory) Ecoinvent database [88]
s used to estimate the environmental impacts associated with waste
treams and material use for the unit construction [112].

upplementary information on the implementation of the solution explo-
ation

Our decision exploration is performed using streamlit, an open-
ource app framework for Machine Learning and Data Science in
ython [113] in combination with the pandas library for data analysis
114] and other python libraries and packages. The main implemen-
ation steps are specified further in the following paragraph. For
isplaying the solutions in parallel coordinates, the plotly express
ibrary is used [115]. When calculating the distribution of key per-
ormance indicators for the uncertainty distributions, the equations
n are used with the respective distribution of parameters as given
n Table 2. For getting the desired percentile of the distribution and
ther descriptive statistics, we use the pandas describe function [114].
alculating the rank of the solution with TOPSIS, we use the the
opsis-jamesfallon module [116], which uses a collection of criteria with
ssociated weights and directions as given in Table 3 to calculate the
ser rank. More information about the mathematical specification of
he TOPSIS calculation can be found in [117]. For steering the solution
eneration from the generated results, the correlation between each KPI
f interest and the optimizer decision is obtained using the pandas corr
unction [114] with the spearman rank correlation coefficient [118].

upplementary material on the case study

upplementary material on the process superstructure

Table 4 gives an overview of the main modeling assumptions in-
luded in the process superstructure and the references the reader may
onsult for further information for the process model details.

For the industrial Kraft mill studied in this work, the typical pulp
17

roduction uses 60% of hardwood species (poplar, beech, oak and
Table 5
Composition of bark biomass on a dry ash-free basis.

Feedstock Softwood bark Hardwood bark Typical 60/40 Mix

C % 50.9% 51.1% 51.1%
H % 6.1% 6.3% 6.2%
N % 0.4% 0.4% 0.4%
S % 0.1% 0.1% 0.1%
O % 42.5% 42.2% 38.0%

Table 6
Composition of Softwood Black Liquor Solids on a dry ash-free (daf ) basis.

Parameter Value Unit

Lignin 31 wt%𝑑𝑎𝑓
Poly-saccharides 2 wt%𝑑𝑎𝑓
Aliphatic saltsa 40 wt%𝑑𝑎𝑓
Inorganics in black liquor solids 22 wt%𝑑𝑎𝑓

aIncludes aliphatic carboxylic acids (29wt%𝑑𝑎𝑓 ) and sodium bound to organics
(11wt%𝑑𝑎𝑓 ).

chestnut) and 40% of softwood species (pines and spruce) by weight.
Table 5 shows the biomass composition (on a dry, ash-free basis) used
in the analysis.

The weak black liquor is assumed to contain 18wt% dry solids
(corresponding to a water content of 82 wt%). In this study, as per [70]
the composition of black liquor is restricted to the following species:
lignin, poly-saccharides, aliphatic (carboxylic) salts and inorganics. The
inorganics are modelled by four main compounds, namely sodium car-
bonate Na2CO3, sodium sulphate Na2SO4, sodium hydroxide NaOH and
sodium sulphide Na2S, with relative proportions as per [70]. Extractives
are not included in this analysis as they are typically removed in the
weak black liquor storage tanks. It is assumed that any extractives
remaining in the BL stream exit the system as losses in the salt separator
and therefore do not affect the syngas yield. The assumed composition
is displayed in Table 6.

Supplementary information on the results

Table 7 shows the decisions of the selected solutions for both DMs

analyzed in the case study.
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Table 7
Decisions of selected solutions for both DMs.

DM 1 DM 2
Decision 𝑓mult/ Solution 0 1 2 3 4 0 1 2 3

m_pretreatment 0.9 1.6 1.6 1.6 1.6 0 1.6 1.3 1.6
m_wgs 1 1.6 1.6 0.7 1.7 0 1.3 1.5 1.6
m_meoh_syn 0 0 0 0 1.8 0 0 0 0
m_dme_syn 1 0 0 0 0 0 0 0 0
m_ft_syn 0 1.9 1.9 0.7 0 0 1.9 1.5 1.9
m_chtg 0 8.1 20 0 0 0 4.8 0 3.7
m_psa 0 0 0.3 0 0 0 0.3 0 0
m_mea_psa 0 0 0 0 0 0 0 0 0
m_sel 0 0.2 0 0 0 0 0.2 0 0.2
m_mix 0 0.3 0.3 0 0 0 0.6 0 0.3
m_br_elec 0 0 0 0 0 0 0 0 0
m_alk_elec 0 0 0 0 0.2 0 0 0 0
m_co_elec 0 0 0.01 0 0 0 0 0 0
m_opx1 0 0.7 1.9 0 0 0 0 0 0.2
m_burn_1 0 0 0 0 0 0 0 0 0
m_burn_pg 0 0 0 2.5 0.2 0 0 0 0
m_lime_kiln 2 1.7 1.3 2 2 2 1.8 2 1.9
m_burn_lk_og 0 0.1 0 0 0 0 0.4 0 0.1
m_burn_lk_gas 0.3 0.2 0.2 0.3 0.3 0.3 0.1 0.3 0.2
m_recaust 1 0.8 0.6 1 1 1 0.9 1 0.9
m_evap_conc 1 0.9 0.7 1 1 1 0.9 1 0.9
m_boiler_rec 14.9 12.8 9.7 14.9 14.9 14.9 13.6 14.9 13.9
m_boiler_bark 0.7 0 0 0 0 1.6 0 0.3 0
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