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INTRODUCTION

Protein footprinting is a powerful tool for structural characterization of proteins and their 
complexes that examine conformational changes and ligand binding by determining the 
solvent accessibility of the backbone or side chain structures of protein molecules [1].   
By comparing the footprint of a protein in two different structural states, changes in the 
protein topography can be detected and interpreted in the context of other structural 
information [2]. 

There are many footprinting methods used with the mass spectrometric detection. One 
popular approach is based on monitoring extent of oxidation of protein side chains due to 
exposure of oxidative reagents from solution. 

We examined the possibility to achieve footprinting by exposing model peptides or 
proteins to molecular singlet oxygen, a known reactive oxygen species. 

Singlet oxygen, O₂(¹Δg) or ¹O₂, is the lowest excited electronic state of molecular oxygen. It 
is generated by the transfer of energy to ground (triplet) molecular oxygen and it exhibits 
significantly greater reactivity towards organic compounds than triplet oxygen [3].

Singlet oxygen reacts with a wide range of biological targets, including DNA/RNA, 
proteins, and all classes of lipids. Kinetic data are consistent with proteins being a major 
target for the singlet oxygen, with modifications occurring preferentially at Trp, His, Tyr, 
Met, and Cys side-chains. It has been also described that reaction between proteins and 
singlet oxygen generates peroxides in high yield, mostly on Tyr, Trp, and His residue sites. 
[4,5]

METHODS

Quench-flow setup consisted of 3 syringe pumps, separately delivering solution of the 
protein/peptide to be examined, solution of the photosensitizer compound and 
quenching solution (Schema 1)

Highly reactive singlet oxygen was generated after laser irradiation by a photodynamic 
effect of phtalocyanine - a process in which excited photosensitizer interacts with a ground 
state oxygen dissolved in water, and creates singlet oxygen [6]. 

The collected samples were analyzed by direct infusion into solariX XR 15T, Bruker 
Daltonics

The LC analysis was performed using Evosep One EV-1000 (Evosep) and  timsTOF SCP 
(Bruker Daltonics)
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Singlet oxygen generated by photodynamic effect was tested as a reagent for  protein 
footprinting

Experimental conditions were optimized for quench-flow conditions

Model peptides and proteins were oxidized by singlet oxygen and analyzed by MS

Oxidative modifications were detected by direct infusion and LC-MS and localization 
was performed by top-down and bottom-up
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Schema 1: Apparatus and experimental steps
1/ Mixing sample and photosensitizing compound 
2/ Irradiation with red laser light, generation of singlet oxygen and reaction with the analyte
3/ Quenching the reaction and sample collection 
4/ Detection of collected sample by HRAM-MS
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Figure 1: Mass spectrum of Angiotensin II; sequence=DRVYIHPF
Top: After exposure to singlet oxygen
Bottom: Control (intact Angiotensin II, doubly charged ion at m/z=523)

Mass spectrum of Angiotensin II showed mainly the doubly charged ion at m/z=523. Sample exposed to singlet 
oxygen showed new doubly charged peaks at m/z=530 (addition of 14Da), corresponding to addition of  O atom and 
loss of two H atoms (or addition of 2O and loss of water) and m/z=539 (addition of 32Da), corresponding to 
addition of  2O atoms. 
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Figure 3: CID MSMS spectrum of doubly 
charged Angiotensin II precursors 
Top: Oxidized precursor; MSMS of 530
Bottom: Control (intact Angiotensin II); MSMS of 523

The MSMS spectrum shows that the oxidative 
modification in the sequence  begins with fragments 
y3 and b6, which localizes it to histidine

Figure 4: CID MSMS spectrum of doubly  charged 
Angiotensin II precursors 
Top: Fragment y3 and its modifications
Bottom: Fragment b6 and its modifications
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Figure 2: LCMS anlysis of Angiotensin II oxidized by singlet oxygen
Top:  XIC (m/z=530.7) of oxidized sample 
Bottom: XIC (m/z=523.7) of control sample 
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RESULTS

Figure 5: Top-down analysis of recombinant  
prion protein (PrP) oxidized by singlet oxygen

Top: Fragment y105; oxidized and control
Bottom: Fragment b22; oxidized and control
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Figure 6: Oxidation of Ubiquitin by singlet 
oxygen

Top: Peaks of oxidized Ubiquitin 8+ species
Bottom: Peak of control Ubiquitin 8+

.

Figure 7: Singlet oxygen labelling of CLC-ec1 using in-house built quench-flow apparatus. Summary of 
sequence coverage (left) and visualization of modified sites on the CLC-ec1 structure (right)
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