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Abstract: Holographic tomography (HT) is a measurement technique that generates phase
images, often containing high noise levels and irregularities. Due to the nature of phase retrieval
algorithms within the HT data processing, the phase has to be unwrapped before tomographic
reconstruction. Conventional algorithms lack noise robustness, reliability, speed, and possible
automation. In order to address these problems, this work proposes a convolutional neural
network based pipeline consisting of two steps: denoising and unwrapping. Both steps are carried
out under the umbrella of a U-Net architecture; however, unwrapping is aided by introducing
Attention Gates (AG) and Residual Blocks (RB) to the architecture. Through the experiments, the
proposed pipeline makes possible the phase unwrapping of highly irregular, noisy, and complex
experimental phase images captured in HT. This work proposes phase unwrapping carried out by
segmentation with a U-Net network, that is aided by a pre-processing denoising step. It also
discusses the implementation of the AGs and RBs in an ablation study. What is more, this is the
first deep learning based solution that is trained solely on real images acquired with HT.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantitative Phase Imaging (QPI) describes a vast array of State-of-the-Art phase measurement
techniques, constantly expanding and improving [1,2]. It enables high-quality measurements of
transparent objects, whose effect on phase delay is directly represented in the results. Crucially,
unlike fluorescence microscopy, it does not require labeling, reducing the risk of photobleaching
or phototoxicity while improving the measurement speed and cost.

Holographic tomography (HT) is one of the most popular 3D QPI techniques used when a
high-resolution reconstruction of a specimen’s inner structure is needed [1]. The 3D refractive
index (RI) distribution is provided by tomographic reconstruction based on complex amplitudes
retrieved from the multiplicity of digital hologram projections of an object illuminated from
different directions. Due to the nature of phase coding in holograms or interferograms, the
phase retrieved from the fringe patterns is in the form of mod2π, i.e., it exhibits discontinuities
and requires further processing through a phase unwrapping (PU) procedure. PU is the most
challenging and demanding procedure during the final phase retrieval process in the presence
of high noise and domain discontinuities. In the case of HT, failures of PU for even a few
holographic projections may induce significant errors in the reconstructed RI, so it is essential to
ensure its reliability and high performance.

Although PU has been tackled during the last thirty years by many research groups and
numerous path-dependent [3–6], and path-independent [7–9] methods have been developed, they
lack, in difficult cases, in noise robustness, reliability, speed, and automation.

With the late development of artificial intelligence (AI) and deep learning (DL), PU has been
approached using convolutional neural networks (CNNs), which have proven their significant
contribution in pattern recognition tasks [10]. By adjusting the weights of a convolution kernel
in the networks, the model studies the image’s features and their relations. This ability means
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that, nowadays, DL is a State-of-the-Art solution of image classification [11–13], segmentation
[14–16], object detection [17,18], image denoising [19–22] and PU [23–27] problems. In
particular, PU has been solved in two ways: semantic segmentation (SS) and image translation
(IT). SS labels pixels with integers according to their fringe order, generating a wrap count map.
It is then multiplied by 2π and added to the wrapped phase image, generating a continuous phase
distribution. It establishes a direct relationship between the wrapped phase input and the output,
transforming the image from one domain to another.

This paper presents a DL-based pipeline capable of denoising of wrapped phase images and
unwrapping the (mod2π) phase. The denoising and unwrapping algorithms work under the
umbrella of CNNs. These two models work in tandem as a pipeline, with the output of the
denoising step being the direct input to the unwrapping model. Synthetically generated dataset
with varying complexity and noise has been used as training data for the denoising model, which
preserves the essential information at the discontinuities of the object. The unwrapping model
incorporates a U-Net [28] backbone, however, it utilizes Attention Gates (AG) [29] and Residual
Blocks (RB) [12] and, unlike other State-of-the-Art DL-based PU solutions, has been trained on
a large dataset of real data acquired in HT. Specimen captured in this dataset contains complex
scattering structures, and their measurements exhibit high noise, which results in irregular phase
fringes. The pipeline has been evaluated on real data from HT measurements and synthetic
data, created in a way that can generate phase images of cell-like structures with aberrations and
noise. Note that this paper focuses solely on the analysis of PU by the proposed pipeline, which
is why all the results and tests are performed on single projections of HT data, as opposed to
reconstructing an entire 3D volume for HT. The proposed pipeline is the first work in which the
unwrapping, performed by semantic segmentation, is trained entirely on the images acquired in
HT. Other State-of-the-Art models are trained on synthetically generated images or images that
do not exhibit irregularities in phase fringes. Therefore we predict, that their performance will
not match that of our proposed pipeline with real HT images.

This paper consists of six parts. Firstly, a brief description of the theory of phase retrieval and
unwrapping within the scope of HT is presented in Section 2. Section 3 provides detailed insight
into the individual models in the pipeline, as well as the chosen hyperparameters and evaluation
metrics. The testing stage of model development and its evaluation assessment is presented in
Section 4. The results, discussion, and overall performance of the proposed method against the
State-of-the-Art techniques are presented in Section 5. Finally, Section 6 concludes and reviews
the proposed methodology.

2. Theoretical background

2.1. Processing pipeline in holographic tomography

HT [30,31] is a quantitative label-free imaging technique that reconstructs the 3D RI of a
transmissive or quasi-transmissive object from multiple holographic projections. The label-free
nature makes it attractive for biological analysis, as specimens, like cells and tissues, are inherently
semi-transparent. RI distribution and its changes are related to the biophysical features of the
specimens and are utilized in such fields as cytometry, cell biology, biotechnology, infectious
disease, hematology, and cancer research.

In biomedical applications, the projections are most often captured in a Mach-Zehnder
interferometer configuration with the object illumination beam uiφ scanning (Fig. 1). The beam
scattered usφ at the object is interfering with the reference beam ur and creates an in-plane
hologram with carrier frequency which is captured by the camera (CAM). As shown in Fig. 1,
each hologram is processed by the Fourier transform method [32] with the aim to retrieve an
object phase in sequential projections. The retrieved data is in the form of phase fringes (mod2π),
and they require PU. The PU step in the HT processing pipeline (the blue box in Fig. 1) is the
point of interest in our paper. After PU, the phase projections are further processed by one of the
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tomographic reconstruction procedures [33]. Each tomographic measurement requires capturing
from a few tens up to a few hundreds of holograms for a single volumetric measurement. If some
of the phase projections contain gross errors due to incorrect unwrapping, the final reconstruction
of 3D RI is erroneous [34] without the possibility to control or predict the character and value
of the error. This statement is general, and it also refers to other HT system configurations
and holographic reconstruction procedures and phase retrieval methods such as temporal or
spatial phase shifting methods [35]. It should be noticed that recently HT has been applied for
investigations of bigger and/or more scattering biological objects, including tissues, organoids,
and small organisms [36–38], which provide very noisy and complicated mod2π maps. This is
the reason why novel approaches to PU are required.

Fig. 1. Schematics of the proposed modification to the measurement pipeline in HT,
including the system and the processing.

2.2. Phase unwrapping

The basic PU process includes scanning of phase fringes and, upon encountering a phase
discontinuity, adding a multiple of 2π. Since measured phases can exhibit local shadows,
irregular shapes, brightness, discontinuities, and noise, sophisticated PU algorithms have been
developed to solve this problem with high confidence [39]. Conventional algorithms have
been described in Section 2.2.1, while Section 2.2.2 presents the development of different PU
algorithms, which are based on DL techniques.

2.2.1. Conventional methods

The conventional methods describe the PU algorithms that have not been developed under the
umbrella of AI or DL. Those methods can be divided into two groups: path-dependent, that
follow a path on the phase image, and path-independent [35], which tackles the unwrapping
problem globally. However, at the moment, global solutions based on regularization are not
widely applied. Typically, HT processing uses path-dependent algorithms so that we will focus
on them.

The most important algorithm, from the authors perspective, has been developed by Arevallilo-
Hernandez et al. [3] and is called Quality Guided Phase Unwrapping (QGPU). It is one of the
most robust and popular methods for 2D PU, and serves as a benchmark method in our HT
processing algorithm. What is more, this method is used to obtain all experimental ground truth
(GT) phase images mentioned in this paper, which is why it will be discussed in detail. This
method starts with computing a quality map for the wrapped phase image. Pixels of this map are
then connected by horizontal and vertical edges, for which an edge quality is calculated based
on the values of the connected pixels. Edges are then sorted in decreasing order by the quality
value and queued. Each pixel is assigned to a different group. Iterating over the queue performs
further operations. If the pixels connected by the edge belong to the same group, the edge is
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discarded. Otherwise, the unwrapping operator U(xi, xj) is computed, which determines the
integer multiple k of 2π, which, when added, would unwrap the second pixel. Finally, k2π is
added to all the pixels in the group of the second pixel.

U(xi, xj) = 2π⌊
xi − xj + π

2π
⌋ (1)

where xi and xj denote the first and second pixel of the edge, whilst ⌊.⌋ denotes the floor operation
[3].

This quality-guided unwrapping method shows excellent results regarding speed and robustness;
hence, it is used by many researchers as a go-to State-of-the-Art solution when facing a PU
problem. This method has proven the most reliable in our experiments in the past, which is why
it has been used as a benchmark for evaluating the DL solution proposed in this article, and we
chose it as the GT method for PU comparisons.

Other notable solutions are based on tree-growing strategies and include the Minimal Spanning
Tree (MST) [4] and an algorithm proposed by T. J. Flynn in [5], which has been since improved
upon by J. Xu et al. in [6].

Nevertheless, the performance of the conventional algorithms can be hindered when the
investigated phase images exhibit noise, discontinuities, or high irregularities in the phase fringes.
Therefore, the introduction of AI, especially contemporary DL methods, has been widely utilised
to tackle this problem.

2.2.2. Deep learning methods

Due to the growing popularity of machine learning domain adaption, several DL techniques have
been applied to solve the problem of PU [40]. The CNNs are very popular due to their high
performance ability in image processing, whilst limiting computational cost and inference time.
They are able to learn features of varying complexity (edges, shapes) about images of different
types and modalities. Their name and its operation are based on the convolution operation.

The DL-based phase unwrapping has been tackled by many researchers and through many
different approaches. Those involve PU by semantic segmentation [26,41,42]. In [43] Zhang et
al. proposed a solution, where PU is done by segmentation, and is aided by a pre-processing
DL-based denoising step. Another approach to DL-based PU is image translation, where a direct
mapping between wrapped and unwrapped phase distributions is obtained. Wang et al. in [27]
proposed the integration of RBs into a U-Net, which provided good and stable results. PhUn-Net
is a deep residual network proposed by Dardikman-Yoffe et al. in [44], which is based on the
same approach.

Other notable DL-based PU solutions include using a Recurrent Neural Network in [45] and
a Generative Adversarial Networks (GANs) [46] in [47] and Pix2Pix GANs in [23]. Yang et
al. developed a Deep Image Prior based PU approach in [24], which is a unique DL-based
approach, because it does not require a training set. A thorough review of recent DL-based PU
developments has been compiled by Wang et al. in [48].

In CNNs, convolution can be defined as

Iout[m, n] =
∑︂

j

∑︂
i

Iin[m + j, n + i] · K[j, i] (2)

where m and n denote the coordinates within the image matrix, j and i denote coordinates within
the convolution kernel, Iout, Iin describe output and input image matrices respectively, and K
denotes the convolution kernel.

PU method proposed in this paper is based on the semantic segmentation task, which is very
popular in CNN applications. Semantic segmentation means label assignment for each pixel in
an image.
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In our application, different labels are assigned to different phase wrap counts, as shown in
Fig. 2. Such wrap count is then cast into integer form (e.g., label "0") and multiplied by 2π.
Adding the result to the initial wrapped phase image results in an unwrapped phase image, in
which errors can only be results of misclassifications of pixels and have values of k2π, where k is
an integer multiple resulting from the segmented label.

Fig. 2. Example of generating a wrap count map from a wrapped phase image.

This paper focuses on the U-Net [28], an architecture that has seen growing popularity in this
area. Its energy function EU-Net [49] can be defined as a mathematical combination of a ’softmax’
activation function fsoftmax on the final feature map combined with a cross-entropy loss [28,49].
Softmax is a combination of multiple sigmoid functions fsigmoid [50]. It returns probabilities of
the predicted pixel being labeled to a particular class.

EU-Net =
∑︂
x∈Ω

w(x) log[pl (x)(x)] (3)

where l denotes the true label values and w is a weight map ’learned’ during training.

fsoftmax(z)j =
ez

j∑︁K
k=1 ez

k

for j = 1, . . . , K. (4)

fsigmoid(x) =
1

1 + e−x (5)

This architecture’s name originates from its unique ’U-shaped’ architecture, which can be
divided into three parts: encoding (contracting) path, decoding (expanding) path, and the
bottleneck (bridge) that connects the two. The encoding path’s job is extracting features from an
image with the convolution operation with an arbitrary kernel size [28]. The decoding path is
responsible for upsampling the feature maps. Each level of this part starts with an upsampling
operation, increasing the feature map dimensions by a factor of two. It is followed by a convolution
operation with a 2 × 2 kernel size.

The unique part of U-Nets is the presence of skip connections, which transfer information about
feature maps to the decoding path at the same depth. Upsampled features are concatenated with
the features transferred through those connections, which is followed by two pairs of convolutions
and activation functions. The final layer is convolved through several 1 × 1 kernels, which
corresponds to the number of labels in the segmentation problem [28] and is of shape N × M × k,
where k corresponds to the number of predicted classes and N and M describe the image size.

The U-Net architecture has also been tested and is well-known in tasks such as denoising. In
the case of image translation, this model’s output and the training datasets’ output are in the form
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of continuous phase images. A direct relationship between the noisy and denoised phase images
is established. The difference in model definitions could be in just the final activation function.
Since the output is a denoised image, its shape is N × M × 1.

The training process of the machine learning algorithms is a minimization process. In each
iteration (i.e., epoch), the model is trained with the so-called training dataset (which corresponds
to 70 − 80% of the entire available dataset), during which the weights are adjusted. In CNNs,
the weights are the values of the kernels in the convolutional layers. Next, the trained model is
validated against the validation dataset (20 − 30%). Finally, with each epoch, the overall loss is
estimated. The commonly used loss function Cross-Entropy is favored in segmentation tasks. It
is intended for use when optimizing classification models and can be divided into: a) binary-cross
entropy and b) categorical-cross entropy, respectively [51].

However, the preferred loss function in image translation tasks is the Mean Squared Error
(MSE) [22,44].

MSE =
1
N

N∑︂
i=1

(ti − si)
2 (6)

where N denotes the number of observations, or, as in this case, pixels, ti is the GT label, and si
is the network prediction.

3. Methodology

3.1. Proposed pipeline

As mentioned in Section 2.2, PU is strongly disturbed by the presence of noise in phase fringes.
Therefore, to minimise the influence of noise we propose the two-step process, which includes
denoising wrapped phase images (Section 3.2) and unwrapping phase discontinuities through
semantic segmentation (Section 3.3) of phase images in mod2π form, which is shown in Fig. 3.

Fig. 3. Block diagram of the pipeline.

Step 1 of the pipeline processes the input as a translation task. The output is the same
wrapped phase distribution, but the noise has been removed. The noise removal model outputs
an intermediate image, which is the unwrapping models’ input. This process can be described as
a translation task. The name of this task has been assigned by the authors of this paper, and it
originates from the fact that the task of the model is to translate the data from one domain to
another (noised image to denoised image, wrapped phase to unwrapped phase, etc.). Unwrapper
outputs the segmented prediction (as in Fig. 2), known as the wrap count. The wrap count map is
then multiplied by the value of the discontinuity - 2π, so that the pixels in an area identified as
having no wraps will equal to 0, one wrap to 2π, two wraps to 4π, etc. Element-wise addition of
this matrix and wrapped phase image results in a continuous phase distribution. The networks’
architectures are described in-depth in Sections 3.2 for denoising and 3.3 for unwrapping. Note
that, all tensor sizes in the figures (Fig. 5 and Fig. 7) are written, for simplification, assuming
input image size of 256 × 256 × 1. In reality, the input image size can be arbitrary, however, the
model requires the input data aspect ratio of 1.
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Fig. 4. a) Architecture of a defined convolution block, b) Architecture of a residual block
[12].

Fig. 5. Architecture of the U-Net model used in the noise removal step. The convolutional
block is shown in Fig. 4(a). Residual blocks have been defined as shown in Fig. 4(b).

3.2. Noise removal step

Noise removal is implemented in this pipeline as a pre-processing step, during which significant
noise is removed, but, most importantly, information at the discontinuities is preserved, improving
the performance of the following unwrapping step.

The model responsible for removing the noise of a wrapped image is based on a U-Net [28]
backbone architecture. It can be characterized as a 3-level U-Net, because the encoding and
decoding paths consist of three levels, with the bottleneck connecting them at the lowest level.
The number of filters in the first convolutional operation in the model is a hyper-parameter of
the architecture. In this model, it was set to 8. This model uses a non-linear activation function
LeakyReLU fLeakyReLU (leaky rectified linear unit) [52].

fLeakyReLU(x) =

{︄
x if x ⩾ 0
x
a if x < 0, where a ∈ (1,+∞)

(7)

This function is a modification of a ReLU (rectified linear unit) activation function, which
"leaks" negative values, but multiplies them with the parameter a, whose value was set to 100.
The processing path on each level of the decoding path is presented in Table 1. Each level is
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finalized with a MaxPooling operation (kernel size 3 × 3, stride (1, 1) and ’same’ padding),
which halves the feature map size and increases the ’depth’ of the model.

Table 1. Stack of consecutive operations on one level of
depth in the noise removal U-Net.

Operation Kernel Size Stride Padding

2D Convolution + BN + ReLU 3 × 3 (1,1) ’same’

Residual Block 3 × 3 (1,1) ’same’

2D Convolution + BN + ReLU 3 × 3 (1,1) ’same’

Residual blocks were introduced in [12]. Their architecture can be seen in Fig. 5. Through
the use of skip connections and addition of the input to the output of the weighted operation
(i.e., convolution), the network does not focus on learning the output H(x) but instead learns
the relation F (x) := H(x) − x. The learned quantity is the residual between the input and the
output, which enables training deeper models with little to no increase in error [12]. Overfitting
is tackled by applying Batch Normalization [53].

The bottleneck layer consists of the same operation as on each level on the encoder path,
however, at this depth, the number of the feature maps is 26 (23 times larger than at the first depth
level of the U-Net), and their dimensions are 23 times smaller than those of the input image.

The decoding layer consists of a stack of the same operations as in the encoding path and the
bottleneck, however, it is preceded by a 2D Transposed Convolution operation and concatenation
with feature maps transferred through a skip connection at the corresponding depth. As mentioned
in Section 2.2.2 the decoding layer upsamples the feature maps at each depth level of the model,
by broadcasting the input data via kernel, which means that this is a trainable operation. The
number of filters in this operation at depth n is halved, whilst the feature map dimensions are
doubled with respect to the feature maps at level n − 1. At the shallowest level, the model is
finished by a 2D Convolution operation with one 1×1 kernel followed by a LeakyReLU activation
function, which means that the final output image’s shape is the same as the model’s input image
shape.

The breakdown of parameters has been depicted in Table 10 in Appendix A. The total number
of parameters in the model was 714,185 (712,777 trainable and 1,408 non-trainable parameters).

3.3. Phase unwrapping step

In the context of wrap count map generation, PU is the assignment of an integer value to a pixel,
which corresponds to their fringe order as shown in Fig. 2. This results in differences in the
output. Its shape has to correspond to the number of classes, that the model is expected to predict,
and the final activation function must output values in the range (0; 1], since it determines the
probabilities of pixel-wise label assignment.

Whilst the unwrapping model is based on the same backbone as the noise removal model (see
Section 3.2), it is more complex and deeper. Whilst the denoising model has 3 levels of depth,
the unwrapper has 5 levels of depth. It uses a non-linear activation function ReLU fReLU [54]
(rectified linear unit). It is useful, when tackling overfitting problems. The encoding path can
recognize more complex and smaller features of the image, thus performing well on phase images
with small and more convex irregularities in phase fringes.

fReLU(x) =

{︄
x if x ⩾ 0
0 if x < 0,

(8)

The model also differs in the skip connection formulation, where AGs have been introduced.
Semantic and instance segmentation tasks have benefited from the introduction of AG mechanisms
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(Fig. 6) in 2018 by Oktay et al. [29], which uses additive attention ql
att, since it has been proven to,

whilst being computationally expensive, provide better results on higher dimensional data [55].

ql
att = ψ

T [σ1(WT
x xl

i +WT
g gi + bg)] + bψ , (9)

αl
i = fsigmoid[ql

att(x
l
i, gi;Θatt)], (10)

where fsigmoid denotes a sigmoid function (Eq. (5)), Θatt denotes a set of parameters, which
include: linear transformations Wx, Wg and ψ. Variables x and g denote input pixel and gating
signal vectors, respectively [29].

Fig. 6. Schematics of an AG. Its implementation and schematics have been inspired by [29].

It is a trainable mechanism, which works by generating an attention weight matrix on a feature
map. Since it incorporates a sigmoid activation function (Eq. (5)), the values of the weights are
output in the range (0; 1]. Output feature maps are multiplied by the attention weight matrix,
which suppresses unimportant areas, whilst transmitting salient features, it helps the model ’pay
attention to what is important to the task’. The order of operations remains the same as in the
denoising model (Table 1) with the only difference being a larger kernel size 5 × 5.

Higher depth of the mode also means that the number and the dimensions of feature maps at
the deepest levels has increased. The first convolution operation uses 8 filters, which means that
at the shallowest level, the feature tensor shape is equal to 256× 256× 8. Because the dimensions

1

Fig. 7. Architecture of the Attention U-Net model used for generating phase wrap-count
maps. The final operation in this model is a 1 × 1 × Nc convolution, followed by a softmax
(Eq. (4)) activation function. Nc denotes the number of classes defined in the segmentation
task.
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are halved and their numbers (as described in Section 2.2.2) are doubled, the feature tensors’
dimensions are 8 × 8 × 256.

The detailed breakdown of the parameters of the unwrapping model has been depicted in
Table 11 in the Appendix, whilst the model architecture has been presented in Fig. 7. The amount
of feature maps puts the number of total parameters of the model to 11, 217, 989 + 9 × Nc split
into (11, 211, 477 + 9 × Nc trainable + 6, 512 non-trainable parameters.)

4. Experiments

This section presents the result of experiments within the scope of the DL model training.
First, the environments within which the models have been trained are described in Section 4.1.
Sections 4.2 and 4.3 describe the process of generation and augmentation of the synthetic and
real datasets respectively. Appendix C presents the metrics, with which the models have been
evaluated and classified. Section 4.4 touches on training the U-Net model with 3 levels used for
noise removal on synthetically generated data, whilst Section 4.5 describes training the semantic
segmentation Attention U-Net model for PU by wrap count map generation.

4.1. Environment settings

The Attention U-Net model training has been performed on a stationary desktop PC. Its most
crucial parameters for DL training are the GPU and CUDA software versions. The system used
an NVIDIA GTX 1070 GPU with 8.0 GB of VRAM and CUDA software in version 11.4. The
noise removal model has been developed and trained on the Google Colab platform using a
high-end GPU dedicated to neural network computations, which has been made available by the
platform.

4.2. Synthetic phase data

In the case of PU, the diversity of a synthetic dataset can be improved by implementing simulations
of various aberrations and backgrounds. Images generated by the MATLAB script contain
floating point data in the range (0, 255]. They were generated in three different ways (Ispher(x, y),
Ilin + interp(x, y) and Ispher + interp(x, y)) and were further processed according to the data generation
pipeline shown in Fig. 8.

Ispher(x, y) = Wx(x +WposX)
2 +Wy(y +WposY)

2 (11)

Ilin + interp(x, y) = αBG(Wx(x +WposX) +Wy(y +WposY)) + Iinterp (12)

Ispher + interp(x, y) = αBGIspherical(x, y) + Iinterp (13)

where Wx and Wy have randomly initiated weights for x and y components, WposX and WposY
are randomly generated positional coefficients and αBG is a weight with which the interpolated
image was combined with the generated backgrounds. Ispher(x, y) denotes a spherical distribution,
which was used in this dataset as a standalone phase image or as a background. Ilin is a linear
component (a tilt or gradient). Iinterp is an interpolated image, which was generated by randomly
initializing a matrix of sizes between 3×3 and 11×11 and interpolating it to the size of 256×256
pixels, which was set as the image size in the training datasets, similarily to [27].

Rescaling the continuous phase provided a more accurate simulation of real data. This
unwrapped phase was treated as the GT and served as the basis for the generation of: wrapped
phase images (applying mod2π on the unwrapped phase) and wrap count GT images (integer
division by 2π). Noised images were created by adding noise sampled from a normal distribution
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Fig. 8. Synthetic data generation pipeline.

[56] N(µ, σ2) of which the probability density function fN(x) is defined as in Eq. (14).

fN(x) =
1

σ
√

2π
exp[−

1
2
(
x − µ

σ
)2] (14)

where µ defines the mean of the distribution and σ denotes standard deviation. The mean of the
noise was constant and set to 0.0, whilst the standard deviation was a randomly generated value
in the range [0.0, 0.6].

Generation of wrapped, wrap count, and noisy synthetic images have been performed in Python
with the NumPy library. The different phase images generated this way have been showcased in
Fig. 9.

4.3. Experimental phase data

Experimental phase data has been acquired in the form of digital holographic projections captured
in the HT measurements at the Warsaw University of Technology [57]. The real dataset contains
images of cells [58], organoids [37], phantoms [59,60] and regular structures that were 3D printed
and exhibit high scattering properties [36]. The real dataset’s continuous phase distribution has
been obtained by PU with the QGPU algorithm [3]. In its entirety, the dataset contains 27,189
images. Each wrapped phase input image has its task-dependent counterpart (denoised, wrap
count, unwrapped). The size of this dataset has been achieved by data augmentation using:

• rotation in 90◦ increments,

• rescaling (doubling and quadrupling in range),

• flipping around the vertical, horizontal, and diagonal axes,

• cropping from each corner and the middle of the image, each cropped image has been
rescaled, flipped, and rotated.

The type and parameters of each operation have been assigned randomly. This way, one raw
phase image could be used to generate, on average, more than 70 new dataset entries (Fig. 10).
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Fig. 9. Showcase of data from the synthetic dataset. Row a) represents rescaled continuous
phase data, b) wrapped phase images, c) noised wrapped phase images, and d) shows wrap
count maps for corresponding phase maps. Columns represent different phase maps in the
same forms.

4.4. Experiments with noise removal

As mentioned in Section 4.1, training of the noise removal model has been performed using
GPU cloud computing in the Google Colab platform. The dataset used for training this step was
numerically generated, as described in Section 4.2. The dataset consists of 8,000 input-output
image pairs split into training and validation sets in 80 : 20 proportion, typical for supervised
learning. Wrapped phase image with synthetically generated noise was the input image, whilst the
output was a noise-free phase image. The network’s objective was noise removal through MSE
error function minimization. Initial number of convolution filters on the shallowest depth level of
the U-Net was defined as 8 and the size of the kernel in all convolution operations was 3 × 3. As
described in Section 3.2, the number of feature maps generated through convolution doubled
with each level of depth, whilst their dimensions were halved. This model also incorporated L2
kernel regularization. It introduces a penalty to the weight decay in the form of a squared value
of the regularization coefficient.

Training was done with the Adam optimizer. Its name is an acronym for ’adaptive moment
estimation’. Nowadays common in CNN training, Adam optimizer’s advantage comes in memory
requirements. It computes individual adaptive learning rates for estimates of gradient moments
[61]. It was defined with two parameters: initial learning rate, which was set to 10−3, and epsilon,
a variable introduced for the sake of numerical stability, of value 10−7. Epoch limit of the training
was set to 200. During each epoch, batches of 16 images were introduced and afterwards, the
weights were updated. Model was trained using the keras library, and it was monitored using
three predefined callbacks. Each time a model’s validation loss reached a new minimum, the
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Fig. 10. Visualization of real dataset generation with example data from the experimental
phase image dataset: a) cell #1, b) cell #2, c) spherical phantom, d) scattering structure [36],
e) cell #3.

model was saved. If the validation loss has not improved for 15 epochs, the learning rate would
decrease by a factor of 10, and if it did not improve over the last 20 epochs, learning stopped. The
learning rate decreased at epochs 27, 49, and 60, reaching a final value of 10−6. Final model was
saved after the 62nd epoch, after which the validation loss (Eq. (6)) reached a value of 0.00432.

4.5. Experiments with wrap count map generation

Dataset used for training the unwrapping model consisted entirely of experimental phase images
of living cells, organoids, and phantom structures acquired by HT, as described in Section 4.3.
For this task wrapped phase image was the input data, and the GT for the segmentation task
was the wrap count map. The whole dataset generated this way had 27,000 input-output image
pairs. As in Section 4.4, the dataset was split into training and validation data by ratio 80 : 20.
Overfitting has been tackled by introducing an L1 regularization as a penalty to the kernel
weights. Differing from the L2 regularization, L1 regularization introduces an absolute value of
the regularization coefficient. This method has been applied to all the convolution kernels within
the model, whose size has been set to 5 × 5. Similarly to the noise removal model, the initial
number of kernels on the shallowest depth level has been defined as 8. The loss function used
for training this model has been set to Sparse Categorical Cross-Entropy (SCE). It differs from
Categorical Cross-Entropy (CE) in the output type. SCE takes integers as class labels, whilst in
CE, the labels have to be one-hot-encoded. E.g., while choosing from 5 possible labels, 2nd label
being correct: in SCE, that would be denoted by 1 (starting from 0), however, in CE it would be
denoted as a vector [0, 1, 0, 0, 0].
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As in the denoising model, the optimizer and initial learning rate values were declared as Adam
and 0.001, correspondingly. Epsilon value of 10−7 has also remained. Training has been limited
to 300 epochs, during which batches of 32 data pairs have been introduced, however, because of
the callback functions used for monitoring training, it ended after 93 epochs. Best results have
been achieved after the 58th epoch. At this point, the validation loss achieved its minimum at
0.13226 and accuracy at 96.448%. Throughout the training, the learning rate changed, according
to a predefined callback, by a factor of 0.1. Decreasing at epochs 58, 76, and 93, finally reaching
a value of 10−6. Training time on a local desktop PC (section 4.1) was 4 hours and 5 minutes.

5. Results and discussion

The proposed pipeline has been tested on images from two origins. Section 5.1 describes the
pipeline’s performance in noise removal and unwrapping on synthetically generated data. Results
on experimental phase images have been shown in section 5.2.

5.1. Results on synthetic data

This section starts with the depiction of the noise removal step of the proposed pipeline, which is
followed by a presentation of the results of unwrapping on different phase distributions. Results
of the models’ denoising performance have been obtained from the same simulated phase
distribution with added noise. Figure 11 displays a chosen phase image with 3 levels of noise.

Fig. 11. Showcase of the noise removal step on 3 different levels of noise (varying in the
standard deviation of its distribution): a) µ = 0.0, σ = 0.4, b) µ = 0.0, σ = 0.6 and c)
µ = 0.0, σ = 0.8. The difference map shows the amount of noise removed by the proposed
model described in Section 3.2.

Figure 11 shows the performance of the proposed noise removal model on 3 phase images with
different levels of noise, which has been simulated randomly within a normal distribution. Within
each row (a - c), the mean µ has remained constant, whilst the standard deviation σ has increased.
It should be noted that the denoising process removes noise, whilst preserving high-frequency
information at the discontinuities. This feature is clearly shown in Figs. 18 and 19 in Appendix
B.This figure shows a vertical cross-section taken through the center of the phase images.

Table 2 shows the metric values of denoising images shown in Fig. 11. Since this section
reviews the results of the simulated phase images, the GT image (without any added noise
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beforehand) was available. Hence the PSNRnoisy metric was computable. PSNRdenoised compares
the denoised images’ quality with respect to the GT. Other metrics include MSE, RMSE, and
SSIM. The metrics table shows that, independently of noise level, the model provides equal
performance (improvement of 6 − 8 dB of PSNR), which facilitates the following step of PU.

Table 2. Metric values for noise removal of images with different noise levels
(Fig. 11(a), (b), (c)).

PSNRnoisy PSNRdenoised MSE [rad2] RMSE [rad] SSIM

a) (µ = 0.0, σ = 0.4) 20.0818 dB 27.3025 dB 0.0075 0.0863 0.9559

b) (µ = 0.0, σ = 0.6) 18.4110 dB 26.8887 dB 0.0085 0.0923 0.9539

c) (µ = 0.0, σ = 0.8) 17.2508 dB 26.0882 dB 0.0115 0.1073 0.9319

Figure 12 presents the results of unwrapping of 3 chosen simulated phase images with the
proposed method: a) spherical phase distribution resulting in closed phase fringes on the wrapped
image, b) phase distribution resembling cells and a background (BG) with a spherical phase
component, and c) phase distribution resembling cells and a BG with a slight phase tilt. First
and 4th column shows the GT images obtained during dataset generation, whilst the 2nd and 3rd

columns depict the model’s prediction and unwrapped image correspondingly. The 5th column
shows an unwrapping error map between the unwrapped and GT images.

Fig. 12. Showcase of PU by predicting wrap count map through semantic segmentation
with the proposed model described in Section 3.3.

The error map, especially in rows b) and c), shows that the phase is unwrapped with good
performance even with sudden and steeper gradients of phase (e.g., simulated cell over the
background with linear gradient). This can also be observed on the left-hand side of the
unwrapped image in row c), where the phase gradient is steep, and the phase fringes on the
corresponding wrapped phase image are dense.
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Results presented in this section show phase images that have been denoised and unwrapped.
This demonstrates the performance of the entire proposed pipeline. However, it also carries
several consequences in evaluating the pipeline’s performance. Since the noise removal step
has affected the unwrapped and denoised image compared to a GT continuous phase image,
metrics like the MSE, RMSE, and SSIM are visibly affected. The nature of unwrapping through
segmentation of wrap count maps means that (using only the unwrapping step) the errors stem
from pixel misclassifications, and thus the errors on the unwrapped phase can only be equal
to multiples of 2π. Denoising of images before unwrapping them causes the denoising error
to be propagated, and its effects are visible on the metrics of evaluation. However, since the
objective of this section is to evaluate the entire pipeline, the authors decided against changing
the evaluation but adding an explanation.

Testing on synthetic phase images enabled comparison of PSNR of the final step (denoised
and unwrapped phase image compared to the GT continuous phase image). This metric was
described in the final column of Table 3. Other metrics include the MSE, RMSE, SSIM, and the
segmentation accuracy for the GT segmentation map. The table shows that the model provides
exceptional results on the tested images. In fact, very few pixels were misclassified. PSNRunwr
proves that removing the images’ noise constitutes to obtaining a good result. Other metrics also
show that the unwrapped images very closely resemble the GT image; however, bigger values of
the MSE and RMSE or smaller values of the SSIM show that, as mentioned before, the error is
being propagated from the noise removal step.

Table 3. Metrics values for PU for 3 different types of simulated images (Fig. 12(a), (b), (c)).

MSE [rad2] RMSE [rad] SSIM ACCseg PSNRunwr

Spherical distribution a) 0.0423 0.2057 0.9879 99.9069% 33.6324 dB

Cells w/ spherical BG b) 0.0116 0.1079 0.9846 99.9924% 35.1077 dB

Cells w/ tilted BG c) 0.0301 0.1735 0.9905 99.9481% 34.3571 dB

5.2. Results on experimental data

Several types of experimental phase images have been chosen in this section. This section has
been split into showcasing the performance of both steps of the proposed pipeline. Firstly, the
authors focus on noise removal on real data, which is followed by a display of results of the
second step of the pipeline - unwrapping by semantic segmentation.

Figure 13(a), (b), and (c) depict different types of experimental phase fringe images used
for testing the pipeline, more importantly, its’ first step. The first row (phase image a)) depicts
challenging data - a high scattering foam 3D printed using NanoScribe [57], 2nd and 3rd rows b
and c show phase images of two different cells, acquired with an HT technique. The images are
denoised by the model trained on the synthetic dataset, which is discussed in sections 3.2 and 4.4.

The experimental phase images that were taken using the HT technique exhibit high irregularities
due to the measured specimens’ natural irregularity in structure. This means that unwrapping a
realistic wrapped phase image is significantly more difficult than doing so on simulated phase
distributions. This is visible especially in row a) of Fig. 13, where the specimen was a highly
scattering 3D printed object. Its irregular surface resulted in strongly irregular discontinuities.

However, even in these extreme cases, the model is capable of preserving phase information at
the discontinuities, while smoothing out and removing noise within the structure. It is clearly
illustrated in Fig. 19 (cross-sections obtained by slicing vertically through the images’ center) in
Appendix B.

Metrics marked with ∗ can also be interpreted differently. In the simulated case, denoised phase
images are directly compared to their simulated noise-free counterpart. Real data analysis lacks
the noise-free GT image, which means that the metrics shown in Table 4 reflect a comparison
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Fig. 13. Showcase of the noise removal step on different types of real data, which was
described in Section 4.3. The difference map shows the amount of noise removed by the
proposed model described in Section 3.2; a) scattering 3D printed object, b) cell #1, c) cell
#2.

between phase images with noise and those processed by the proposed denoising model. This is
also why the PSNRnoisy is not computable. Phase images that originate from an HT measurement
of the high-scattering 3D printed foam proved to be the most difficult to correctly process, which
is confirmed by the metrics values (MSE and RMSE values are the biggest, whilst the SSIM is
below 0.5). Rows b) and c) show that noise removal does not impact the visibility of the structure
of the measured specimen; the details are still visible.

Table 4. Metric values for noise removal of 3 experimental phase images (Fig. 13(a), (b), (c)).

PSNR∗
noisy PSNR∗

denoised MSE∗ [rad2] RMSE∗ [rad] SSIM∗

Scattering 3D printed object a) − dB 19.6442 dB 0.3347 0.5786 0.4445

Cell #1 b) − dB 22.8006 dB 0.0877 0.2961 0.5208

Cell #2 c) − dB 23.6758 dB 0.0533 0.2309 0.6579

Unwrapping is shown on 4 phase images. Figure 14 shows a wrapped phase image of a
spherical phantom (a) and cell images acquired using HT (b); Fig. 15 shows a cropped phase
image of a 3D printed foam exhibiting high scattering level (a) (similarly to Fig. 13(a)) and a
phase image of nasal epithelium cell (b).

The metrics used to evaluate unwrapping on experimental phase images are the same as in
Section 5.1. It can be seen that the segmentation part is performed with high accuracy for rows
a) and b) in Fig. 14, for which the proper GT wrap count map was available. Due to the direct
comparison with the GT unwrapped phase, other metrics are decreased, resulting from the direct
error propagation from the denoising step (described in detail in Section 5.1). It can be seen
that these metrics (MSE, RMSE, and SSIM) values get worse lost during processing through
the pipeline. However, this quality loss only corresponds to noise removal (the GT image is an
unwrapped image on which no noise removal has been performed). Table 5 shows that the model
used for segmentation is capable of a perfect prediction on an experimental phase image.
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Fig. 14. Showcase of the result of the PU step on different types of real data, which was
described in Section 4.3. The error map shows the amount of noise removed by the proposed
model described in Section 3.2 combined with unwrapping error induced by the model
described in Section 3.3.

Fig. 15. Showcase of performance of the pipeline tested on data obtained similarly to that
on Fig. 14. Errors on the error maps originate from the poor performance of the benchmark
algorithm, which is used to generate GT phase images.

Table 5. Metric values for PU for two different types of experimental phase
images (Fig. 14(a), (b)).

MSE [rad2] RMSE [rad] SSIM ACCseg PSNRunwr

Spherical phantom a) 0.0044 0.0669 0.9733 100% 30.7664 dB

Cell #3 b) 0.3398 0.5829 0.9281 99.0356% 30.3202 dB
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Evaluation of experimental phase images can be difficult, especially whilst examining compli-
cated phase distributions. Although required, obtaining a GT image for comparison with the
prediction of the proposed solution generates problems with complex and irregular phase images.
Figure 15 and Table 6 demonstrate this phenomenon. The GT image is taken by unwrapping the
phase using a QGPU [3] algorithm, which is treated as a baseline method for comparison in this
paper. However, this method is not perfect, and highly irregular phase fringes (Fig. 15(a) and (b))
can surpass its capabilities. These wrapped phase images have not been properly unwrapped by
the baseline. Hence the metrics in Table 6 are not representative.

Table 6. Metric values for PU for two different types of experimental phase images (Fig. 15(a),
(b)).

MSE [rad2] RMSE [rad] SSIM ACCseg PSNRunwr

Scattering 3D printed object a) 9.1220∗∗ 3.0202∗∗ 0.7168∗∗ 50.5829%∗∗ 17.1177 dB∗∗

Nasal epithelium b) 12.9663∗∗ 3.6009∗∗ 0.7893∗∗ 99.2737%∗∗ 19.3662 dB∗∗

Metrics values of results from the unwrapping of phase images, marked with ∗∗, on Fig. 15(a)
and (b) (Table 6) are compromised due to not obtaining proper GT images for comparison.
Wrapped phase distribution was complex enough to generate issues for the QGPU algorithm [3],
used for generating all experimental phase GT images.

5.3. Ablation study

In order to verify the importance of the proposed elements within our model, we performed an
ablation test, during which three new models were assessed: a model without AGs, a model
without RBs, and a model without both AGs and RBs. What is important, the training parameters
have been consistent with the original model for all 3 new models within the ablation study. The
dataset has also been split (80:20, as mentioned in section 4.5) in the same way (the parameter
random_state has been preserved).

This study has been performed on a testing dataset of 100 images, from which the mean µ and
standard deviation σ of the metric values have been chosen for analysis. The metrics discussed
in this study are ACC (Eq. (C5)) and MSE (Eq. (6)). The results have been shown in Table 7.

Table 7. MSE (Eq. (6)) and ACC (Eq. (C5)) statistical values for PU of the ablation testing
dataset performed with different models.

Full model Model w/o RBs Model w/o AGs Model w/o RBs & AGs

MSE [rad2] 0.0512 ± 0.0754 1.7728 ± 2.8042 0.0421 ± 0.0531 1.9254 ± 3.2574

ACC [%] 99.9055 ± 0.2882 96.0651 ± 6.0273 99.9257 ± 0.2592 95.3864 ± 7.8052

It can be deduced from Table 7 that the implementation of AGs into our unwrapping U-Net
model did not have a significant influence. Overall performance of the complete model and the
one without AGs remains on a similar level and it does so with similar consistency. Note that the
ablation testing dataset consisted of both synthetic and experimental phase images. This helps
draw an important conclusion that AG is not necessary for PU of HT images.

At the same time, this table shows the importance of RBs in PU of HT data. The model
without RBs and the model without both RBs and AGs provide subpar results on this dataset.
The mean values of the metrics show the models poor performance and inability to generalise on
new data, whilst the standard deviation show their inconsistency throughout the study.

5.4. Comparison against state-of-the-art methods

Figure 16 shows the results of a direct comparison of segmentation wrap count maps between
State-of-the-Art models. As indicated in Section 2.2.2, we compare the DL-based solutions,
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which rely on the semantic segmentation task. The chosen models are: (1) the U-Net model
proposed in [28], which is the original U-Net model proposed for medical image segmentation
and which is the base for our proposed solution; (2) PhaseNet [41], which also uses the wrap
count map segmentation for PU; (3) PhaseNet2.0 [26], which is a follow-up work to PhaseNet;
(4) the method denoted as PU-DCSN, which was proposed in [43] and its name is the abbreviated
form of "Phase Unwrapping - Denoised Convolutional Segmentation Network" for ease of
reference; (5) model for simultaneous denoising and wrap count map generation named TriNet
[62] by Sumanth et al.; (6) EESANet [63] developed for phase unwrapping and also using the
self-attention mechanism. The PU-DCSN method uses a similarly structured pipeline consisting
of noise removal and wrap count map generation through semantic segmentation.

Fig. 16. Comparison with other methods of PU (semantic segmentation of wrap count
maps).

Note that the PhaseNet, PhaseNet 2.0, PU-DCSN, TriNet, and EESANet models were
implemented to the best of the abilities of the authors. The implementation is based solely on the
models’ descriptions in their corresponding papers, which is caused by code unavailability. The
models were successfully coded in Keras (Python), compiled, trained, and used to predict the
wrapped phase data. It should also be noted, that no preprocessing step has been introduced to
solutions that did not include it. This is based on the idea, that the authors compare the entire
solution for DL-based PU for HT phase images, rather than just the unwrapping segmentation
model.

Figure 16 shows that whilst the U-Net (3rd column) is capable of correct predictions on this
dataset, its results were not consistent and performance was poorer than that of our pipeline.
Similarly, PhaseNet and PhaseNet 2.0 (4th and 5th columns, respectively) predicted the wrap
count maps roughly correctly. However, the results contained misclassified wrapped areas, where
the phase distribution exhibited no discontinuities. PU-DCSN (6th column) has not shown proper
segmentation on any wrapped phase image. Such strong errors indicate that the method has not
been reproduced successfully. The 7th and 8th columns present results obtained by the TriNet
and EESANet models correspondingly. Results obtained by implementing our proposed pipeline
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have been placed in the 9th column. The figure indicates that our pipeline can produce the best
results on the irregular phase distributions of different types and magnitudes. This conclusion
is also backed in Table 8, where each of the predicted wrap count maps presented in Fig. 16 is
compared to the GT wrap count map of the corresponding wrapped phase image. The metric
used for this table is the prediction accuracy (Eq. (C5)). It can be seen that, according to the
accuracy metric, the proposed pipeline performs with the most consistency and is on par with the
EESANet model in terms of high quality wrap count map generation.

Table 8. Comparison between different semantic segmentation DL methods used in literature
for PU. The metric used for this comparison is the prediction accuracy (Eq. (C5)). The best

metric between DL-based solutions is emphasized in bold. The rows a-f refer to the rows a-f on
Fig. 16.

U-Net
[28]

PhaseNet
[41]

PhaseNet2.0
[26]

PU-DCSN
[43]

TriNet
[62]

EESANet
[63]

Our Pipeline

a) 98.9944% 95.5978% 90.8585% 39.6469% 92.4973% 99.3805% 99.9527%

b) 98.9700% 99.3439% 97.4823% 44.1315% 97.1756% 100% 100%

c) 96.5759% 99.1013% 99.9054% 41.3849% 99.8932% 100% 100%

d) 35.9924% 17.8970% 18.2922% 35.5896% 13.8657% 9.0942% 92.1082%

e) 91.5436% 81.3187% 94.3298% 58.1177% 73.5962% 100% 99.9985%

f) 99.9420% 95.6604% 97.0856% 44.1498% 100% 100% 100%

The final step of PU through semantic segmentation is multiplying the predicted wrap count
map by 2π and adding it to the wrapped phase map. Figure 17 shows the unwrapped phase
images of each method mentioned in this section. Their notation and placement correspond
to those in Fig. 16. Additionally, two conventional methods have been shown for comparison.
These are QGPU [3], used as a baseline for obtaining experimental phase GT images, and MST
[4]. Both have been described in depth in Section 2.2.1. Table 9 reinforces the observations
stated in this section by comparing the unwrapped phase images’ MSE value concerning their
GT continuous phase counterparts. It can be seen that the smallest MSE value has been achieved
by the EESANet model. However, the proposed pipeline provides good results more consistently
throughout the entire set of testing images. The larger MSE values originate from the denoising
operation and are propagated through to the final result (as discussed in section 5.1).

Table 9. Comparison between different PU methods (conventional and DL-based). The
metric used for this comparison is the MSE [rad2] (Eq. (6)). The best metric between

DL-based solutions is emphasized in bold. The rows a-f refer to the rows a-f on Fig. 17.

U-Net
[28]

PhaseNet
[41]

PhaseNet2.0
[26]

PU-DCSN
[43]

TriNet
[62]

EESANet
[63]

Our Pipeline

a) 0.5423 1.8976 3.7781 27.7800 2.8421 0.3855 0.0301

b) 0.4066 0.2590 0.9939 22.8907 1.0868 3.3232*10-15 0.0145

c) 1.3518 0.3548 0.0373 23.3286 0.0989 4.6741*10-16 0.0084

d) 27.7232 38.0909 36.3195 38.7747 44.9349 40.8727 0.3685

e) 3.3439 7.3751 2.2385 16.7861 10.7847 2.2534*10-14 0.0092

f) 0.0229 1.7132 1.1506 22.0080 0.0153 3.1114*10-16 0.0006
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Fig. 17. Comparison with other methods of PU.

6. Conclusions

In this paper, we propose the PU pipeline consisting of a noise removal step and a PU step. The PU
step is done by semantic segmentation of areas limited by phase discontinuities, described as phase
wrap counts. The implementation of AGs and RBs in the model has improved the unwrapping
capabilities of the model. In addition, we describe the process of obtaining, generating, and
augmenting synthetic and real datasets used for training and evaluating the models. The method
is tailor-made for HT applications and has shown great results and promise for analysing phase
images of living cell specimens, phantoms, and complex structures exhibiting high degree of
scattering. It should be emphasised that this article not yet provides the general rules regarding
the DL-based denoising and PU.

The results are compared with four State-of-the-Art DL methods based on the semantic
segmentation technique. This comparison shows that our proposed pipeline exhibits the best PU
and denoising capabilities for highly irregular data, which come from different HT measurements
of various specimens.

In the future, this new unwrapping approach will be fully implemented in the HT system with
the aim to obtain improved 3D RI reconstructions for biological microobjects (cell monolayers,
organoids, tissues) with high scattering features.

Appendix A

This appendix contains tables, which describe the parameters of the denoising and unwrapping
DL models described in this paper in sections 3.2 and 3.3, respectively.
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Table 10. Breakdown of parameters of the model used for noise removal (Fig. 5). Kernel size has
been defined as 5 × 5, containing 25 parameters. Abbreviations used in the table: CB - 2D

Convolutional Block (Fig. 4(a)), RB - Residual Block (Fig. 4(b)), TC - 2D Transposed Convolution,
FinCB - Final 2D Convolutional Layer, b - biases.

Depth
Level

Encoder Decoder
Size Per Layer Total Per Level Size Per Layer Total Per Level

1

CB: 1 × 8 × 25 + 8 × 4

5160

TC: 16 × 8 × 25

11377

RB: 2 × (8 × 8 × 25 + 8 × 4) CB: 16 × 8 × 25 + 8 × 4

CB: 8 × 8 × 25 + 8 × 4 RB: 2 × (8 × 8 × 25 + 8 × 4)

b: 4 × 8
CB: 8 × 8 × 25 + 8 × 4

FinCB: 8 × 1 × 1

b: 5 × 8 + 1

2

CB: 8 × 16 × 25 + 16 × 4

22720

TC: 32 × 16 × 25

45136
RB: 2 × (16 × 16 × 25 + 16 × 4) CB: 32 × 16 × 25 + 16 × 4

CB: 16 × 16 × 25 + 16 × 4 RB: 2 × (16 × 16 × 25 + 16 × 4)

b: 4 × 16
CB: 16 × 16 × 25 + 16 × 4

b: 5 × 16

3

CB: 16 × 32 × 25 + 32 × 4

90240

TC: 64 × 32 × 25

179872
RB: 2 × (32 × 32 × 25 + 32 × 4) CB: 64 × 32 × 25 + 32 × 4

CB: 32 × 32 × 25 + 32 × 4 RB: 2 × (32 × 32 × 25 + 32 × 4)

b: 4 × 32
CB: 32 × 32 × 25 + 32 × 4

b: 5 × 32

4

Bottleneck
Size Per Layer Total Per Level

CB: 32 × 64 × 25 + 64 × 4 359680

RB: 2 × (64 × 64 × 25 + 64 × 4)

CB: 64 × 64 × 25 + 64 × 4

b: 4 × 64

Total Number of Parameters 714,185

(712,777 trainable + 1,408 non-trainable)
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Table 11. Breakdown of parameters of the Attention U-Net model used for wrap count map
segmentation (Fig. 7). Kernel size has been defined as 5 × 5, containing 25 parameters, except for

the 2D Transposed Convolutions, which used 3 × 3 sized kernels, containing 9 parameters.
Abbreviations used in the table: CB - 2D Convolutional Block (Fig. 4(a)), RB - Residual Block

(Fig. 4(b)), TC - 2D Transposed Convolution, AG - Attention Gate (Fig. 6), FinCB - Final 2D
Convolutional Layer, b - biases, Nc - number of classes defined in the segmentation task.

Depth
Level

Encoder Decoder
Size Per Layer Total Per Level Size Per Layer Total Per Level

1

CB: 1 × 8 × 25 + 8 × 4

5160

TC: 16 × 8 × 9

10620 + 9 × Nc

RB: 2 × (8 × 8 × 25 + 8 × 4) CB: 16 × 8 × 25 + 8 × 4
CB: 8 × 8 × 25 + 8 × 4 RB: 2 × (8 × 8 × 25 + 8 × 4)
b: 4 × 8 CB: 8 × 8 × 25 + 8 × 4

AG: 16 × 8 × 9+
2 × (8 × 8 × 1)+
8 × 1 × 1 + 8 × 4
FinCB: 8 × Nc × 1
b: 8 × 8 + 1 + Nc

2

CB: 8 × 16 × 25 + 16 × 4

22720

TC: 32 × 16 × 9

42193

RB: 2 × (16 × 16 × 25 + 16 × 4) CB: 32 × 16 × 25 + 16 × 4
CB: 16 × 16 × 25 + 16 × 4 RB: 2 × (16 × 16 × 25 + 16 × 4)
b: 4 × 16 CB: 16 × 16 × 25 + 16 × 4

AG: 32 × 16 × 9+
2 × (16 × 16 × 1)+
16 × 1 × 1 + 16 × 4
b: 8 × 16 + 1

3

CB: 16 × 32 × 25 + 32 × 4

90240

TC: 64 × 32 × 9

167841

RB: 2 × (32 × 32 × 25 + 32 × 4) CB: 64 × 32 × 25 + 32 × 4
CB: 32 × 32 × 25 + 32 × 4 RB: 2 × (32 × 32 × 25 + 32 × 4)
b: 4 × 32 CB: 32 × 32 × 25 + 32 × 4

AG: 64 × 32 × 9+
2 × (32 × 32 × 1)+
32 × 1 × 1 + 32 × 4
b: 8 × 32 + 1

4

CB: 32 × 64 × 25 + 64 × 4

359680

TC: 128 × 64 × 9

669505

RB: 2 × (64 × 64 × 25 + 64 × 4) CB: 128 × 64 × 25 + 64 × 4
CB: 64 × 64 × 25 + 64 × 4 RB: 2 × (64 × 64 × 25 + 64 × 4)
b: 4 × 64 CB: 64 × 64 × 25 + 64 × 4

AG: 128 × 64 × 9+
2 × (64 × 64 × 1)+
64 × 1 × 1 + 64 × 4
b: 8 × 64 + 1

5

CB: 64 × 128 × 25 + 128 × 4

1436160

TC: 256 × 128 × 9

2674305

RB: 2 × (128 × 128 × 25 + 128 × 4) CB: 256 × 128 × 25 + 128 × 4
CB: 128 × 128 × 25 + 128 × 4 RB: 2 × (128 × 128 × 25 + 128 × 4)
b: 4 × 128 CB: 128 × 128 × 25 + 128 × 4

AG: 256 × 128 × 9+
2 × (128 × 128 × 1)+
128 × 1 × 1 + 128 × 4
b: 8 × 128 + 1

6

Bottleneck
Size Per Layer Total Per Level

CB: 128 × 256 × 25 + 256 × 4 5739520
RB: 2 × (256 × 256 × 25 + 256 × 4)
CB: 256 × 256 × 25 + 256 × 4
b: 4 × 256
Total Number of Parameters 11,217,989 + 9 × Nc

9 × Nc trainable + 6,512 non-trainable)
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Appendix B

Fig. 18. Vertical cross-section taken through the center of a synthetic phase image in
depicted in Fig. 11(c) (µ = 0.0, σ = 0.8). Plot depicts an enhanced view of the phase
discontinuities to show the high frequency information preservation.

Fig. 19. Vertical cross-section taken through the center of a synthetic phase image in
depicted in Fig. 13(a), b and c. Plot depicts an enhanced view of the phase discontinuities to
show the high frequency information preservation.

Appendix C: performance metrics

In this article, 5 performance evaluation metrics, which were described in this section, were
used. MSE (Eq. (6)) is often used in image translation tasks. It describes a pixel-wise mean
squared difference between one matrix (network prediction) and a second matrix (GT image).
It requires a continuous phase distribution for comparison. Root mean squared error (RMSE)
image translation tasks. It is more easily interpretable, because it represents the magnitude
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of the response variable, as opposed to its squared value (MSE). Similar to MSE, the goal is
minimisation of this metric. Since both methods are used for continuous distribution comparison,
they have been chosen for this article.

RMSE =

⌜⃓⎷
1
N

N∑︂
i=0

(ti − si)2, (C1)

where the notation is analogical to Eq. (6).
Structural Similarity Index (SSIM) has been developed by Wang et al. [65]. It describes the

similarity between two images and is believed to be correlated with the perception quality of
the human visual systems. Its values span the range (0, 1], with 0 representing no correlation
between images. Hence the goal is to maximize SSIM value during training as well as the
pipeline evaluation.

SSIM = l(f , g)c(f , g)s(f , g), (C2)

where: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
l(f , g) = 2µf µg+C1

µ2
f +µ

2
g+C1

c(f , g) = 2σfσg+C2
σ2

f +σ
2
g+C2

s(f , g) = σfg+C3
σfσg+C3

(C3)

In Eq. (C2) the terms l, c and s represent comparisons of luminance, contrast, and structure
of images f and g, as shown in Eq. (C3). µ and σ describe the mean and standard deviation of
corresponding matrices. The variables C1, C2 and C3 have been introduced to ensure a non-zero
denominator [65,66].

Quality of denoising is done with a Peak Signal-to-Noise Ratio (PSNR) [66]. Increase of this
metric describes a higher image quality. Since it requires a comparison with GT, it was only
computed during denoising synthetic images.

PSNR = 10 log10(
Irange

2

1
N
∑︁N

i=0(ti − si)2
), (C4)

where variables are denoted analogically to Eqs. (6) and (C1).
Final metric used in this paper is classification accuracy, denoted as ACC. It describes the

percentage of correctly predicted pixels with respect to the whole matrix.

ACC =
Nc

Nt
, (C5)

where Nc and Nt denote the number of correctly classified pixels and total pixels correspondingly.
The models in this pipeline were evaluated using the beforementioned metrics. More specifically,

the denoising model has been evaluated using MSE (Eq. (6)), RMSE (Eq. (C1)), SSIM (Eq. (C2))
and PSNR (Eq. (C4)) metrics. The unwrapping model’s segmentation performance has been
evaluated using the accuracy metric (Eq. (C5)), whilst the MSE (Eq. (6)), RMSE (Eq. (C1)) and
SSIM (Eq. (C2)) have been used for the final unwrapping evaluation.
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